Soil Assessment and Landfill Gas Risk Assessment

GWS Centre of Excellence – Building D 1 Olympic Boulevard, Sydney Olympic Park, NSW

14 August 2023

Soil Assessment and Landfill Gas Risk Assessment

GWS Centre of Excellence – Building D 1 Olympic Boulevard, Sydney Olympic Park, NSW

ARC Environmental Project Number: 2207292

Prepared for:

FDC Construction

22-24 Junction Street Forest Lodge NSW 2037

Revision Status:

Revision	Status	Date	Prepared By	Authorised by
0.0	Draft	11 July 2023	Georgia Bayley	Jay Parmansche
1.0	Final	14 August 2023	pp. Georgia Bayley	Jay Parmansche

Document Distribution:

Copies	Туре	Company	
1	Electronic PDF	FDC Construction	
1	Electronic PDF	Paul Moritz – Accredited Site Auditor	
1	Electronic PDF	ARC Environmental	

Only **FDC Construction**, the appointed Accredited Site Auditor, their designated representatives or relevant statutory authorities may use this document and only for the specific project for which this report was prepared. It should not be otherwise referenced without permission.

ARC Environmental

ABN: 13 542 567 286 www.arcenvironmental.com.au Suite 1.03 7 Jeffcott Street West Melbourne VIC 3003 Phone: (03) 8383 1950 Copyright 2023 ARC Environmental All Rights Reserved

List of Acronyms

Acronym	Definition
ABC	Ambient Background Concentration
ACL	Added Contaminant Limits
ACM	Asbestos Containing Materials
AHD	Australian Height Datum
AS	Australian Standard
AST	Aboveground Storage Tank
bgl	Below ground level
btoc	Below top of casing
CEC	Cation Exchange Capacity
COC	Chain of Custody
CS	Characteristic Scenario
BTEX	Benzene, toluene, ethylbenzene, xylenes
BTEXN	Benzene, toluene, ethylbenzene, xylenes, naphthalene
DELWP	Department of Environment, Land, Water and Planning
DSE	Department of Sustainability and Environment
DSI	Detailed Site Investigation
DO	Dissolved oxygen
DQO	Data Quality Objectives
EC	Electrical Conductivity
EIL	Ecological Investigation Level
ERS	Environmental Reference Standard
ESA	Environmental Site Assessment
ESL	Ecological Screening Level
EMP	Environment Management Plan
EPA	Environment Protection Authority
GSV	Gas Screening Value
HIL	Human Health Investigation Level
HSL	Human Health Screening Level
IWRG	Industrial Waste Resource Guidelines
km	Kilometre
L	Litre
LOR	Limits of Reporting
LFG	Landfill Gas
m	Metre
MGA	Map Grip of Australia
mm	Millimetre
MoE	Maintenance of Ecosystems
MW	Monitoring well
NATA	National Association of Testing Authorities
NDD	Non-destructive digging
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure

Acronym	Definition
NHMRC	National Health and Medical Research Council
OCP	Organochlorine Pesticides
PAH	Polycyclic Aromatic hydrocarbon
РСВ	Polychlorinated Biphenyls
PCR	Primary Contact Recreation
PID	Photo-ionisation Detector
PIR	Property Information Report
PSI	Preliminary Site Investigation
ррт	Parts per million
QAQC	Quality Assurance / Quality Control
RPD	Relative Percentage Difference
SB	Soil Bore
SOPA	Sydney Olympic Park Authority
TCE	Trichloroethylene
TDS	Total Dissolved Solids
ТРН	Total Petroleum Hydrocarbons
UPSS	Underground Petroleum Storage Systems
USCS	Unified Soil Classification System
USEPA	United States Environment Protection Authority
UST	Underground Storage Tank
VHC	Volatile Chlorinated Hydrocarbons
VOCs	Volatile Organic Compounds
WHO	World Health Organisation

Table of Contents

List of Acro	nyms	i
Executive S	ummary	vi
1. Introduct	ion	1
1.1 Objec	tives	1
1.2 Scope	e of Works	1
2. Site Infor	mation	1
2.1.1	Site Uses	1
2.1.2	Surrounding Land Use	1
2.1.3	Nearby Sensitive Land Use	1
2.1.4	Site Features	2
2.2 Site E	nvironmental Setting	2
2.2.1	Topography	2
2.2.2	Acid Sulphate Soils Potential	2
2.2.3	Regional Geology	2
2.2.4	Regional Hydrogeology and Groundwater Quality	3
2.2.5	Groundwater Resource Utilisation	3
2.2.6	Nearby Surface Water	3
2.2.7	NSW EPA Contaminated Sites and Environmental Licence Registers	3
2.3 Previe	ous Environmental Assessment Reports	3
2.3.1	SOPA Golf Driving Range Landfill History	4
2.3.2 Environi	GWS Giants WestConnex Centre (Building B) – Douglas Partners and SKM Previous nental Investigations	4
2.3.3 Environi	GWS Giants WestConnex Centre Extension (Building C) – ARC Environmental, ESG nental and Douglas Partners Environmental Investigations	6
3. Data Qua	lity Objectives	8
4. Methodol	ogy	.10
4.1 Samp	ling Locations and Rationale	. 10
4.1.1	Soil Assessment	. 10
4.1.2	Landfill Gas Assessment	. 10
4.2 Fieldy	vorks Methodology	. 10
4.3 Enviro	onmental Laboratory Analysis	. 13
5. Regulato	ry Framework and Assessment Criteria	.14
5.1 Regu	latory Framework for Soil	. 14
5.2 Soil C	Quality Assessment Criteria	. 14
5.2.1	Soil Waste Classification	. 15
5.4 Regu	latory Framework for Landfill Gas	. 16
5.5 Landf	ill Gas Risk Assessment	. 16
5.5.1	Characteristic Gas Situation	. 16
6. Field and	Laboratory Results	.17
6.1 Soil F	Results	. 17

6.1.1	Site Geology	
6.1.2	Soil Investigation Field Observations	
6.1.3	Soil Analytical Results	
6.3 Soil a	and Soil Vapour Quality Assurance/Quality Control	
6.4 Land	Ifill Gas Monitoring Results	21
6.4.1	Surface Emissions Monitoring Survey	21
6.4.2	Landfill Gas Risk Assessment	
6.4.3	Sub-surface Landfill Gas Monitoring	
6.5 Gas	Protection Measures	23
7. Conclus	ions	
7.1 Cond	clusions	
8. Limitatio	ons	27
9. Referenc	ces	

List of Tables

Table 2.1	Site Identification Summary	
Table 2.2	Summary of Surrounding Land Use	
Table 2.3	Summary of Site Features	2
Table 3.1	Summary of Data Quality Objectives	8
Table 4.1	Summary of Field Activities	
Table 6.1	Summary of Site Geology	
Table 6.2	Exceedances of Adopted Soil Assessment Criteria	
Table 6.3	Data Quality Objectives	
Table 6.4	GSV Values and Characteristic Situation	21
Table 6.5	Summary of Sub-surface Landfill Gas Monitoring Readings	
Table 6.6	Guidance Values for Gas Protection	23
Table 6.7	Sources of Protection Measures	24

List of Appendices

Figures:	Figure 1 Figure 2 Figure 3	Site Location Site Layout Surface Emissions and Sub-Surface Utility Survey
Attached Tables:	Table 1 Table 2 Table 3 Table 4 Table 5a & 5b	Soil Analytical Results Soil Vapour Analytical Results QA/QC Results – Soil RPDs QA/QC Results – Soil Vapour RPDs QA/QC Results – Field Blanks
Appendices:	Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G	Proposed Development Drawings NSW EPA and SOPA Notices Bore Logs Equipment Calibration Certificates Laboratory Analytical Reports and COC Documentation Field Sheets BoM Weather Data

ARC Environmental has completed a Soil and Landfill Gas Risk Assessment at the GWS Centre of Excellence located at 1 Olympic Boulevard, Sydney Olympic Park, NSW ('the Site').

FDC Construction has been engaged to assist in the management of design and development for new facilities for the GWS Giants Centre of Excellence. The development will be the construction of the proposed pool hall which will herein be referred to as the "Building D Assessment Area."

An Environmental Audit is required to be undertaken for a proposed building extension, with Paul Moritz of Douglas Partners engaged as the Auditor. As such the focus of this report is limited to the "Building D Assessment Area" which is the footprint of the proposed building extensions, and does not assess the wider facility including the existing buildings and does not assess the management of the former golf driving range landfill.

This soil and landfill gas risk assessment was undertaken to assess the risk of contamination at the Building D Assessment Area associated with the former landfill and the suitability of the Building D Assessment Area for the planned Building D development, including a swimming pool. In order to achieve project objectives, five (5) soil bores were advanced and four (4) of these bores were converted to landfill gas bores. Landfill gas bores were monitored three (3) times over a period of six weeks, followed by a surface emissions and sub-surface utility survey of the Building D Assessment Area.

Findings of the SLFGRA were as follows:

- Landfill capping was observed to have greatest thickness in the centre and southeast of the Building D Assessment Area. Capping thickness varied from 1.7 to 4 mbgl;
- Waste beneath capping was observed to contain brick, glass, wood fragments and metal pieces;
- Concentrations of >C₁₆-C₃₄ Fraction (F3), zinc and benzo(a)pyrene were recorded in exceedance of the adopted ecological criteria for recreational open space and commercial land use between drilling depths of 0.5 mbgl and 5 mbgl. Although the adopted NEPM EILs being applied are only relevant to the top 2 m of the soil profile, comparison has been made to all samples to consider potential reuse of excavated material elsewhere on the Site during the redevelopment works;
- Concentrations of lead in soil at depths greater than 4 mbgl in the southeast of the Building D Assessment Area exceeded NSW CT1 waste thresholds and CT2 thresholds in the centre;
- Soil analytical results did not exceed any of the adopted human health criteria. Therefore, excavated soil from the Building D development area may be reused at the Site, subject to SOPA approval;
- Soil vapour results did not exceed any of the adopted assessment criteria for commercial/industrial land use. Identified volatile organic compounds in landfill gas need to be taken into consideration in selection of the landfill gas protection measures (i.e. membrane) to be implemented;
- The worst-case scenario for the Building D Assessment Area has a GSV of 4.54 L/hr for methane and 0.89 L/hr for carbon dioxide, indicating that the Characteristic Situation is 4 (CS4). A CS of 4 would lead to the requirement of gas protection measures;
- In accordance with NSW EPA 2020 guidance, a Level 3 full quantitative risk assessment as an additional factor is to be considered. It is considered that a Level 3 Risk Assessment is not required;

• Landfill gas protection measures must be implemented into the proposed Building D design to meet the required score of 4 in accordance NSW EPA, Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases, 2020. The proposed gas mitigation measures and the slab, footings and piling types should be documented in a mitigation design specification document.

1. Introduction

ARC Environmental (ARC) was engaged by FDC Construction to conduct a Soil and Landfill Gas Risk Assessment at the GWS Centre of Excellence located at 1 Olympic Boulevard, Sydney Olympic Park, NSW ('the Site'). The location of the Site is defined in *Figure 1*.

FDC Construction has been engaged to assist in the management of design and development for new facilities for the GWS Giants Centre of Excellence. The development will be the construction of the proposed pool hall which will herein be referred to as the "Building D Assessment Area."

An Environmental Audit is required to be undertaken for a proposed building extension, with Paul Moritz of Douglas Partners engaged as the Auditor. As such the focus of this report is limited to the "Building D assessment area" which is the footprint of the proposed building extensions, as presented in *Figure* **2**, and does not assess the wider facility including the existing buildings and does not assess the management of the former golf driving range landfill.

1.1 Objectives

The objectives of the assessment was as follows;

- Assess the soil conditions within Building D Assessment Area to determine suitability for reuse on Site; and
- Assess the risks posed by landfill gas and protection measures, if required, for the proposed Building D development.

1.2 Scope of Works

Based on the project objectives, the scope of works completed by ARC included the following:

- A review of previous environmental investigations and environmental setting information relevant to the Site and surrounds;
- Preparation of project-specific health and safety documentation appropriate for the scope of works;
- Clearing of proposed drilling locations by a professional cable locator prior to drilling;
- Advancement of five (5) soil bores, and drilling and installation of four (4) landfill gas bores;
- Collection and laboratory analysis soil samples;
- Landfill gas monitoring of four (4) newly installed landfill gas bores approximately fortnightly for a period of six (6) weeks;
- Soil vapour sampling from four (4) landfill gas monitoring bores;
- Laboratory analysis of soil and soil vapour samples by a laboratory accredited by the National Association of Testing Authorities (NATA) for the methods used; and

• Collation and interpretation of the data, including a quality assurance / quality control (QA/QC) data validation process; and preparation of this report.

A summary of Site identification details is provided in *Table 2.1*. The site and surroundings information was collated from the site visit and review of available mapping as part of this investigation. The site location is shown on *Figure 1*.

Information	Details		
Street Address	1 Olympic Boulevard, Sydney Olympic Park		
Lot Details	Lot 10 of DP1217982		
Current Site Owner	Sydney Olympic Park Authority (SOPA)		
Current Site Use	Recreational – Greater Western Sydney (GWS) Giants Centre of Excellence Training Facility		
Building D Assessment Area	Approx 700 m ²		
Zoning	B4 Mixed Use		
Local Government Authority	City of Parramatta Council		

Table 2.1 Site Identification Summary

2.1.1 Site Uses

The Site is currently used for recreational purposes as the GWS Giants Centre of Excellence (CoE) Training and Administrative Facility. It is understood that the Site is expected to continue to remain for this use with additional development planned for the current facilities, including a swimming pool hall in the southeast (Building D), as presented in *Figure 2*. Design drawings for the proposed development of Building D are presented in *Appendix A*.

2.1.2 Surrounding Land Use

Surrounding land use is summarised in Table 2.2.

Table 2.2 Summary of Surrounding Land Use

Direction	Land Use
North	A multi-level carparking building.
South	Grassed batters to Shirley Strickland Avenue, followed by Sydney Olympic Tennis World.
East	Training oval and former landfill, followed by Australia Avenue and Bicentennial Park.
West	Olympic Boulevard, followed by the Genea Netball Centre.

2.1.3 Nearby Sensitive Land Use

A review of local mapping indicates that no sensitive land uses exist within a 500 m radius of the Site.

2.1.4 Site Features

Site infrastructure is summarised in *Table 2.3* below. The layout of the Site is presented in *Figure 2*.

Site features are presented in Figure 2.

Table 2.3 Summary of Site Features

Feature	Description			
Surface	Grass-covered sporting fields are located in the centre and eastern portion of the Site, with a large, grass-capped asbestos stockpile beyond these fields in the northeast corner. An asphalt road runs along the south, eastern and northeastern boundary of the Site. There is also an asphalt car park in the west of the Site.			
	The assessment area is covered in grass with tan-bark garden beds running along the northern boundary.			
Buildings/ Equipment storage	The main building at the Site is 'GWS GIANTS- VALO Community Centre', a large building with a corrugated roof which features offices, a café, and training facilities. There is a smaller, recently constructed building with a corrugated roof in the northeast corner of the Site.			
Drainage	Suspected stormwater drainage exists in the southwest extent of the Assessment Area			

2.2 Site Environmental Setting

The following section describes the Site environmental setting obtained from publicly available information.

2.2.1 Topography

The Site lies approximately 15 m above Australian Height Datum (AHD) and was observed to be generally flat with sloping batters along its southern and western boundaries to the surrounding roads. The northern/north-western third of the site slopes downwards towards the carpark. The rest of the Site is relatively flat at about the same height as the adjacent oval.

2.2.2 Acid Sulphate Soils Potential

The Australian Soil Resource Information System (ASRIS), provided by the CSIRO, defined the probability of Acid Sulfate Soils effecting the Site as low probability of occurrence with low confidence.

A review of Acid Sulphate Soil (ASS) distribution data on the NSW government SEED database (Sharing and Enabling Environmental Data) found that the site was not in an area known to be affected by acid sulphate soils but was in an area marked as disturbed terrain.

2.2.3 Regional Geology

The NSW Department of Mineral Resources, Sydney 1983 1:100,0000 Geological Survey indicates that the Site is underlain by manmade fill (mf), quaternary silty to peaty sands, silts and clays and Triassic Ashfield Shale from the Wianamatta group, comprising grey and dark grey shale with laminate on a regional scale.

2.2.4 Regional Hydrogeology and Groundwater Quality

The regional groundwater gradient is inferred to be in an easterly direction towards Bicentennial Park and Powell's Creek with the end receptor being Parramatta River. From this site groundwater/leachate is likely present within the waste mass and is actively managed with a drainage system present with associated sumps and pumps which extract leachate/groundwater. It is considered likely that the active management of groundwater/leachate would affect the flow direction beneath the Site.

2.2.5 Groundwater Resource Utilisation

A search of the NSW Department of Industry – Water NSW Groundwater Database online tool on 3 July 2023 for groundwater bores within 1 km of the centre of the Site was undertaken, indicating the 17 groundwater bores are registered in the search area. The search results did not include any information on the use of the identified groundwater bores, groundwater levels or chemistry information.

2.2.6 Nearby Surface Water

The nearest surface water is an unnamed creek located to the south at an approximate distance of 65 metres from the Site which drains to Lake Belvedere to the east and Powell's Creek.

2.2.7 NSW EPA Contaminated Sites and Environmental Licence Registers

The Site is regulated by the NSW Environment Protection Authority (EPA) by a Maintenance of Remediation Notice. No 28040 (NSW EPA Notice 28040) under Section 28 of the *Contaminated Land Management Act 1997* which was issued to the Sydney Olympic Park Authority (SOPA) in 2009.

The NSW EPA Notice 28040 requires SOPA to manage the Site in accordance with the SOPA Remediated Lands Management Plan January 2009 (SOPA RLMP, 2009). This management plan is relevant for all old landfill sites within the Sydney Olympic Park precinct.

Copies of NSW EPA Notice 28040 and an extract of the SOPA RLMP, 2009 related to the Site provided by SOPA are presented in *Appendix B*.

2.3 **Previous Environmental Assessment Reports**

The former landfill present, remediation works undertaken and management of the subject site under the NSW EPA Notice 28040 and the SOPA RLMP, 2009 has resulted in multiple environmental assessment reports, including the following:

- Douglas Partners 2013, Report on Landfill Gas Assessment and Mitigation Design GWS Giants Administrative Facility Development, Olympic Park Boulevard, Sydney Olympic Park (Douglas Partners, 2013);
- Sinclair Knight Mertz 2014, Site Audit Report 235 by Dr Ian Swane, GWS Giants Training and Administrative Facility, Sydney Olympic Park Part of Lot 200 in DP 1041756 (SKM, 2014);
- Sydney Olympic Park Authority 2009, Remediated Lands Management Plan (extract) (SOPA RLMP, 2009); and

• ARC Environmental 2019, Western Sydney Football Club Limited Environmental and Geotechnical Site Assessment (ESGA), 16 December 2019.

2.3.1 SOPA Golf Driving Range Landfill History

The SOPA RLMP, 2009 provides the following subject site history for the closed landfill present at the subject site.

The Golf Driving Range landfill (GDR Landfill) is a consolidation of 3 separate landfills from the State Sports Centre Precinct. The precinct was used for the uncontrolled tipping of municipal waste from 1965 to 1982. Waste was stockpiled in three separate landfills over a 42-hectare subject site north of the rail line; the Western, Northern (now the Golf Driving Range) and Southern landfills. The waste comprised a heterogeneous mix of a wide variety of constituents including variable quantities of putrescible fill.

A remediation strategy for the State Sports Centre subject site was developed in 1991. Part of the remediation strategy was to consolidate contamination and implement some forms of environmental protection. This included the placement of a low-permeability clay cap and subsurface drainage system, the installation of a leachate collection system and clay cut-off wall and the redirection and protection of Boundary Creek.

Works were undertaken to consolidate the three landfills into one. Between 1991 and 1993, 130,000 m³ of waste was shifted from the Western and Southern landfills to overlay the Northern landfill and create a 15-metre-high mound. The Western and Southern landfills were then validated by visual inspection and testing of residual soils to ensure that all traces of contamination were removed prior to backfilling with clean imported fill. Remediation of the GDR was initially complete in March 1994 when the subject site was landscaped.

The original intent was to discharge collected leachate directly to sewer. Changes in Trade Waste requirements however, resulted in sewer discharge being abandoned in 1995 and the construction of a rising main to discharge the leachate to the Kronos Hill system was implemented. The pipe was commissioned in late 1998.

As part of the Olympic Overlay works, the GDR Landfill was recontoured during the late 1999/ early 2000. The earthworks incorporated some waste movement and recontouring, restoration of the clay cap, minor modifications to the leachate system, the installation of a gas drainage layer and the restructure of the sub-surface drainage system. The subject site was approved for use as a "Park, recreational open space, playing field" by an independent site auditor in 2000.

2.3.2 GWS Giants WestConnex Centre (Building B) – Douglas Partners and SKM Previous Environmental Investigations

Subsequent to the rehabilitation of the GDR Landfill for the 2000 Olympic Overlay works, more recent environmental investigations were undertaken at the subject site to support the redevelopment of the former golf driving range into a training field and social sports field and redevelopment and extension of the former golf driving range buildings into the current GWS Giants training facilities and administration buildings. The environmental investigations detailed here are related to Building B, as presented in *Figure 2*.

Douglas Partners, 2013

Douglas Partners undertook a review of the existing landfill conditions, landfill gas mitigation system for the golf driving range buildings, and a geotechnical and preliminary landfill gas assessment previously undertaken by Aurecon in 2012. Based on the review undertaken and in order to supplement the existing landfill gas information the assessment included the following:

- Installation of paired LFG monitoring wells within and below the existing clay cap at four locations. Locations were based on those general areas where the highest LFG concentrations were detected during the Aurecon geotechnical investigation and to provide a general subject site coverage. Locations were also influenced by the presence of services and subject site accessibility constraints;
- Solid flight augering was undertaken using a Geotrace drill rig to reach the required well installation depth. At each location, one borehole was extended at least 2.4 m into the landfill material. The other borehole at each location was terminated at the top of the red and brown clay capping layer;
- Each borehole was logged by an environmental scientist from the auger returns;
- Monitoring of each well for LFG concentration and gas flow rate was undertaken during steady and falling atmospheric pressure events;
- Gas sampling of DP1 and DP3 using laboratory prepared summa canisters over approximately a one hour period; and
- Monitoring surface locations across the subject site.

Based on the preliminary LFG screening reported in the Aurecon geotechnical report, combined with the results of their LFG monitoring, Douglas Partners considered methane to be the primary gas of concern and undertook an assessment of the risk posed to the proposed development using gas screening values (GSVs) and gas characteristic situations. This subsequently established the level of mitigation required as part of the works.

<u>SKM, 2014</u>

The subject site audit report was prepared by Dr Ian Swane of Sinclair Knight Mertz in 2014 with the purpose of meeting the requirements of the Contaminated Land Management Act 1997 and the SOPA Development Consent.

The extent of the subject site covered by the site audit was defined as the footprint of the proposed building covering an area of 2,200 m² and did not include the existing building or other parts of the former golf driving range which were considered to be subject of an earlier site audit prepared by Dr Bill Ryall, with a site audit statement issued in December 2000 and regulated by the NSW EPA under NSW EPA Notice 28040.

Because the subject site was considered to be extensively regulated by the NSW EPA and its remediation was subject to the statutory site audit completed in December 2000, the Site Auditor considered that the scope of the subject site audit should be limited to the following matters that relate directly to the suitability of the proposed building development and for its proposed use:

• The management of landfill gas at the subject site;

- The cap design at the subject site;
- The suitability of excavated material for reuse at the subject site;
- The suitability of imported fill for use at the subject site; and
- The review of an Environmental Management Plan (EMP) for the ongoing management of the subject site (if required).

The Site Auditor considered the proposed facility corresponded to a Recreational C land use as specified in the NEPM (2013) guidelines, which was taken as being equivalent to an open space/parkland use as specified by the NSW EPA (April 2006) "*Guidelines for the NSW Site Auditor Scheme* (2nd edition)".

The auditor undertook a review of subject site conditions up to 2000, between 2002-2007, landfill gas and geotechnical assessment work in 2012 and the follow up landfill gas assessment and modified remediation strategy undertaken by Douglas Partners reported in 2013. The Site Auditor considered the modified remediation strategy documented in the Douglas Partners report (May 2013) when inclusive of the review recommendations met NSW EPA requirements.

The Site Audit included assessment of the adequacy of the remediation and validation works at the subject site by the builder AJ Edwards and Douglas Partners and the compliance with NSW EPA reporting requirements. Each of the following required components were considered to have been adequately addressed:

- Environmental control measures.
- Excavation, shaping and preparation of the cap subgrade.
- Gravel blanket gas drainage layer and pipework construction.
- Compacted clay cap construction.
- Sealed concrete slab construction.
- Gas extraction and venting system.
- LFG monitoring.

Douglas Partners concluded that the as-constructed LFG mitigation measures rendered the subject site suitable for its use as a T&A facility. The Site Auditor considered the available data supported this conclusion provided contamination that remained at the subject site was managed in accordance with an appropriate EMP.

The results of the Douglas Partners, 2013 investigation in conjunction with the outcome of the auditor's review (SKM, 2014) including identified landfill depths, landfill gas conditions, landfill gas mitigation measures and geotechnical requirements are summarised below.

2.3.3 GWS Giants WestConnex Centre Extension (Building C) – ARC Environmental, ESG Environmental and Douglas Partners Environmental Investigations

ARC Environmental undertook environmental assessment of proposed building extensions at the Site, which ultimately led to the development of Building C, as presented in *Figure 2*.

The assessment indicated that shallow soil above the former landfill waste presented a low and acceptable risk to future users of the proposed building extension and to workers during construction.

Based on reported results, shallow soil was likely classified as General Solid Waste CT1 should off-site disposal be required as part of future construction works.

The assessment indicated that a clay capping layer was generally present above the former landfill at variable thickness and depths as follows:

- Northern portion thickness between 0.75 and 1m above waste encountered below at approximately 1.25 m.
- Southwest Corner present from 1.2 to at least 2.0 mbgl.
- Southeast portion present from around 0.9 with waste encountered at approximately 4.5 m.

Monitoring of landfill gas concentrations from the former GDR landfill indicated that organic decomposition of waste was still occurring with elevated concentrations of typical landfill gases, methane, and carbon dioxide, within and below the inferred capping layer. As a result of the landfill gas risk assessment undertaken using the gas screening value methodology consistent with NSW EPA (2012, the Site was considered to represent a Characteristic Gas Situation 3 (CS3).

Based on results of the assessment, Level 2 landfill gas protection measures were recommended, for CS3 and commercial buildings, which was endorsed by the Auditor (Douglas Partners, 2020).

ESG Environmental prepared a LFG gas management system design report, endorsed by the Auditor, providing a conceptual design for the proposed approach to managing potential risks arising from landfill gas. It provided for passive ventilation of landfill gas above and within the existing landfill capping layer, and beneath an impermeable membrane to be installed on the ground surface beneath the building. Slotted pipework was to be installed in gravel trenches on a linear grid beneath the membrane, with the pipes connected to a vertical steel ventilation stack on the perimeter of the building. The membrane was to be sealed around the piles on which the building is supported, and around other intrusions from the sub-surface.

As required by the Conditions of the lease agreement, the Auditor endorsed an Environmental Management Plan (EMP) and a Construction Environmental Management Plan (CEMP) for the proposed development. An ongoing Long Term Environmental Management Plan (LTEMP) was prepared prior to occupation of Building C to ensure ongoing management of residual environmental and human health risks associated with potential landfill gas ingress into the sub-floor space beneath the proposed building.

3. Data Quality Objectives

ARC will adopt quality assurance procedures to provide a consistent approach to evaluation of whether the Data Quality Objectives (DQOs) required by the project have been achieved. The approach will be consistent with the DQO process outlined in the National Environment Protection (Assessment of Site Contamination) Measure (the "ASC NEPM') Schedule B2 *Guideline on Site Characterisation*. The DQOs will focus on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the element of the environment being investigated. The DQOs established for this investigation are detailed in *Table 3.1*.

Table 3.1	Summar	y of Data	Quality	y Objectives

DQO Step	Description				
1. State the Problem	The GWS Giants intend to extend their WestConnex Centre building including the installation of a swimming pool area in proposed Building D.				
	To assess the risk posed to future site users and construction workers, an assessment is to be undertaken to identify whether the Building D Assessment Area poses any risk to human health and environment for the proposed land use based on the historic use as a landfill.				
2. Identify the	The primary objectives of the investigation are as follows:				
Decision	• What are the risks of contamination at the Building D Assessment Area?				
	• Is the Building D Assessment Area suitable for the proposed development?				
	What landfill gas mitigation measures and management plans are appropriate to reduce risks associated with previous landfilling activities?				
3. Identify the Information	Advance five (5) on-site soil bores within the proposed Building D footprint, undertake soil sampling and laboratory analysis.				
Inputs	• Convert four (4) soil bores into subsurface landfill gas bores, within and below the existing cap and undertake monitoring of landfill concentration and flow;				
	Undertake a surface emissions survey of proposed building footprints including of service pits and conduits;				
	• Undertake soil vapour sampling to understand composition of landfill gases and how they might impact potential mitigation systems;				
	Undertake a landfill gas risk assessment; and				
	Prepare a report to support the completion of the development.				
 Define the Boundaries of the Study 	The SLFGRA will be limited to within the proposed Building D footprint within the GWS Giants WestConnex Centre.				
5. Develop a Decision Rule	The decision rule is the comparison of the monitoring analytical results against relevant published guideline criteria most notably the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 for soil and for landfill gas the NSW EPA, 'Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases', May 2020. Reference will also be made to other relevant international guidance which deals with developing on LFG impacted sites if and as required as listed in <i>Section 5</i> . National Association of Testing Authorities (NATA) accredited laboratories will be used for the given analytes and media. Appropriate laboratory limits of reporting (i.e. below relevant health-based screening levels) will be requested from the primary laboratory.				

DQO Step	Description					
	Data collected from the subject Site and adjacent areas will be reviewed to:					
	• Assess whether the soil data is representative of actual conditions at the Site, via the completion a data quality review, and whether it can be relied upon.					
	 Compare contaminant concentrations against the adopted assessment criteria, to assist in establishing whether it poses a risk to identified protected beneficial uses. 					
	• Monitoring landfill gas concentrations and flow, and soil vapour concentrations for comparison with NSW EPA 2020 guidance and risk matrices.					
	If it is determined that additional information is required to further reduce the uncertainties associated with the distribution and characteristics of contaminants within soil, groundwater or landfill gas, then appropriate recommendations for further investigation will be provided which may include remediation and/or management prior to the proposed redevelopment.					
	If remedial works are undertaken to the extent practicable, but elevated contaminant concentrations remain, control measures will be required to mitigate the risk.					
6. Specify Performance or Acceptance Criteria	For the purpose of LFG monitoring, a pre-calibrated GA5000 landfill gas analyser will be used to monitor LFG concentrations in the landfill gas bores and an Inspectra Laser for surface monitoring locations. Analysis will be carried out at each sampling location for a period of 5 minutes for monitoring bores and until concentration levels remain constant.					
	A range of QA/QC procedures and results will be used to evaluate whether the DQOs have been achieved. These procedures assess the useability of the data, particularly with regards to data accuracy and reliability for forming conclusions and are undertaken in accordance with guidance provided within Australian Standards and the ASC NEPM (2013).					
	A data validation assessment with specific acceptance criteria and discussion of results will be completed and provided within the investigation report. As a minimum, field (intra- laboratory) and laboratory (inter-laboratory) duplicates will be collected at a frequency of 1 in 20. All field blanks, equipment rinsate blanks, and laboratory method blanks will require an acceptance limit of concentrations below the laboratory limit of reporting. All blank samples will be assessed for the potential cross-contamination of contaminants of interest.					
7. Develop the Plan for Obtaining Data	The assessment will be undertaken in accordance with the ASC NEPM (2013) and relevant NSW guidance. To maintain the integrity and reliability of data the following measures will be adopted:					
	Samples will be collected using dedicated sampling equipment/containers;					
	• Further soil samples will be collected at regular intervals down the soil profile and on-site VOC screening (PID head space) will be completed prior to analysis;					
	• Leak testing will be undertaken prior to and during soil vapour sampling;					
	Monitoring of landfill gas flow and concentrations from sub-surface bores;					
	Surface emissions monitoring including service pits for landfill gas;					
	Strict adherence to QA/QC protocols; and					
	Use of suitable laboratory limits of reporting.					
	Additional data may be required where:					
	1. Significant data gaps are identified; and					
	2. The additional sampling identifies contamination not previously identified at a level that would pose a risk to future site use.					
	The scope and methodology for the assessment are outlined in Section 4.					
	The on-site landfill gas assessment will be undertaken in accordance with the NSW Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gas (2020).					

4. Methodology

4.1 Sampling Locations and Rationale

4.1.1 Soil Assessment

Five (5) soil bore locations were positioned in locations within the proposed development footprint to enable characterisation of the potential for soil contamination to exist at the Building D Assessment Area above the underlying landfill. Soil sampling was conducted to a maximum depth of 2.0 metres below ground level. Locations of soil bores are shown in *Figure 2*.

Background concentrations of metals for the derivation of site-specific ecological investigation levels were taken from soil samples collected within soils across the Building D Assessment Area considered representative of domains observed on-site.

4.1.2 Landfill Gas Assessment

During the assessment, four (4) of the soil bores were converted to landfill gas monitoring bores to determine the source concentrations and flow of landfill gas from the former landfill both within and below the capping layer present.

Landfill gas monitoring bores were installed at depths varying between 1.5 - 6.0 mbgl to allow assessment of landfill gas both within and below the capping layer. The bore locations were selected based on the proposed building extension footprint. Monitoring was undertaken over three (3) rounds within six (6) weeks to obtain temporal data and, where possible, falling barometric conditions which can increase movement of landfill gas due to increased pressure differential. The landfill gas monitoring bore locations are shown in *Figure 2*.

BS 8485:2015 states where a site encompasses an old landfill area and adjoining area of natural ground, then boreholes located in the landfill are likely to define the source hazard that directly impacts any development above.

A surface emissions walkover was also undertaken including monitoring of service pits present within and in the vicinity of the "Building D Assessment Area" to assess any current potential landfill gas migration.

4.2 Fieldworks Methodology

Field activities that were undertaken as part of the scope of works are summarised in Table 4.1.

Activity	Description				
Dates of Field Activity	17-18 May 2023: Site walkover, subsurface utility survey, advancement and collection of soil samples from five (5) soil bores (LFG01- LFG04 and SB01), followed by installation of four (4) landfill gas bores.				
	25 May 2023: Landfill gas monitoring at LFG01- LFG04.				
	16 June 2023: Landfill gas monitoring at LFG01- LFG04.				
	22-23 June 2023: Landfill gas monitoring at LFG01- LFG04, surface emissions survey and soil vapour canister sampling of all four (4) landfill gas bores.				
Utility Clearance	A 'Dial Before You Dig' underground utility search was performed prior to the commencement of site works under the direct supervision of ARC.				
Soil Boring	ARC engaged and supervised JK Geotech Pty Ltd to advance five (5) soil bores, four (4) of which were converted to landfill gas bores. Bores were advanced using a combination of hand auger, followed by solid stem auger to target depth. All observations and readings, including visual and olfactory observations, were recorded in the field on soil bore logs and in line with USCS (Unified Soil Classification System) by a suitably qualified consultant. Soil bore logs are included in <i>Appendix C</i> .				
Soil Sampling	Soil samples were generally collected at surface, 0.5 mbgl, 1.0 mbgl and 2.0 mbgl, or where visual impact or change of lithology were observed, directly from the hand auger or augers until the capping layer or waste was encountered. Duplicate soil samples were collected in snap-lock bags for screening with a calibrated PID. The PID calibration certificate is included within <i>Appendix D</i> .				
	Clean disposable gloves were used for soil sampling collection. Samples were placed in laboratory prepared glass jar sample containers with individual and unique identification including project number, sampling date and sample number, and then placed into a cooled, insulated and sealed container for transport to the laboratory under Chain of Custody (COC) procedures. Copies of the COC documentation are presented in <i>Appendix E</i> .				
Bore Reinstatement	Following completion of logging and sampling, soil bore SB01 was reinstated with soil cuttings in the order they were removed followed by and a bentonite plug and completed flush to the surface in accordance with the SOPA RLMP Table 8.1 requirements.				
Landfill Gas Monitoring Bore	Following advancement of the soil bores, four (4) landfill gas bores were installed depths between 2 mbgl and 6 mbgl with protective flush gatic covers and vapour caps.				
Installation	Monitoring bores were installed to have a gas tight seal in consideration of NSW EPA Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases, 2020 and SOPA RLMP Table 8.1.				
	The landfill gas bores were installed with 50 mm, flush jointed, class 18 uPVC, threaded screen and casing as follows:				
	 LFG01: installed to 2.0 mbgl, with screened interval from 1.0 to 2.0 mbgl; 				
	LFG02: installed to 1.5 mbgl, with screened interval from 1.0 to 1.5 mbgl;				
	• LFG03: installed to 4.9 mbgl, with screened interval from 2.0 to 4.9 mbgl; and				
	• LFG04: installed to 6.0 mbgl, with screened interval from 4.0 to 6.0 mbgl.				
	soil/waste logging, and comments in the endorsed work plan by the Auditor. The endorsed work plan required that four (4) bores were to be installed, ensuring that the two (2) shallower bores were screened only within the landfill cap and two (2) deeper bores were screened within waste body.				

Table 4.1 Summary of Field Activities

Activity	Description				
	Sand filter packs were generally raised approximately 0.5 m above the top of the screen and a 0.5 m bentonite seal was set above the top of the sand pack. The wells were grout sealed from the bentonite seal to the surface and were finished with a flush mounted gatic and fitted with a lockable well cap.				
	Bore construction details are included on the bore logs as presented in <i>Appendix C</i> .				
Landfill Gas Monitoring Bore Purging and Sampling	Landfill Gas Monitoring was undertaken in accordance with the methodologies outlined in NSW EPA Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases, 2020 and BS8485:2015. Monitoring of the four (4) LFG bores (LFG01 - LFG04) was conducted using a calibrated GA5000 analyser during periods of falling atmospheric pressure. Prior to the gas measurements the initial peak flow rate and differential pressure were noted. Following this the methane; carbon dioxide; oxygen, carbon monoxide and hydrogen sulphide levels were recorded over a period of 5 minutes for each bore, or longer until stabilised.				
	LFG monitoring field sheets are provided in <i>Appendix F</i> and the equipment calibration certificates are presented in <i>Appendix D</i> . Weather data sourced from the Bureau of Meteorology Bankstown Airport station, the closest weather station to the Site which records barometric pressure, is presented in <i>Appendix G</i> .				
Surface and Utility Pit Emissions Landfill Gas Monitoring	A Landfill gas walkover survey was undertaken at the Building D Assessment Area. Utility structures were monitored in general accordance NSW EPA Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases, 2020. A calibrated Inspectra Laser and GA5000 landfill gas analyser were used during the monitoring and methane readings (ppm), carbon dioxide; oxygen, carbon monoxide and hydrogen sulphide levels were recorded on the field sheets provided in <i>Appendix F</i> . The equipment calibration certificates are presented in <i>Appendix D</i> .				
Soil Vapour Sampling	Soil vapour sampling of four (4) soil vapour/landfill gas bores was undertaken by a suitably experienced consultant.				
	A 'shut in" test was completed to ensure the sampling train was not leaking. Tubing was connected to each of the gauges provided, a vacuum of 20" Hg was then applied over a period of a minute using a hand pump to make sure a vacuum was able to be held and there were no leaking connections.				
	Isopropanol was sprayed under a shroud to test for leaks in the pin and the sampling systems. Pre and post PID readings (calibrated to a known concentration of isobutylene gas) was undertaken. The calibration certificate is included within <i>Appendix D</i> and the PID measurements are included in the soil vapour sampling sheet provided in <i>Appendix F</i> .				
	Teflon tubing from the vapour probe was connected to the 1.4 L evacuated summa cannister provided by ALS, and a dedicated soil gas sampling train with flow restrictor (60 mL/min) was connected to the canister. To calculate the volume of sample drawn into the canister, vacuum pressure was recorded at the start and end of sampling. Upon receipt at the laboratory, the canister vacuum pressure was also measured to determine if any leaks occurred during transit.				
Equipment Decontamination	Decontamination of re-useable equipment including the hand auger, drilling rods and interface probe comprised rinsing in a mixture of industrial grade phosphate free detergent (Decon 90) and tap water, followed by a rinse in Decon 90 and de-ionised water and a final rinse in de-ionised water. Any excess soil was removed from the hand auger with a scrubbing brush. In addition, a new pair of Nitrile gloves was used between each sample collection location.				
Waste Disposal	Waste soil cuttings were placed in locked metal drums and removed from the Site by JK Geotech Pty Ltd.				

4.3 Environmental Laboratory Analysis

The soil, soil vapour and Quality Assurance / Quality Control (QAQC) samples were transported to ALS Laboratories (ALS) in Sydney for chemical analysis. ALS are accredited by the National Association of Testing Authorities (NATA) for the analyses undertaken.

Soil

Two (2) primary soil samples per soil bore were analysed. The analysis included the following:

- Total recoverable hydrocarbons (TRH);
- Benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- NEPM metals;
- Sulfate;
- pH;
- 2 x NSW EPA Waste Soil Classification Short Suite;
- 2 x PFAS; and
- 11 x Asbestos identification in soils.

During soil sampling, quality control samples were analysed as follows:

- One (1) intra- and one (1) inter- laboratory duplicate sample (TRH, BTEXN, PAHs, 8 metals);
- One (1) rinsate blank per day of sampling: (TRH, BTEXN); and
- One (1) trip blank per laboratory batch: TRH C₆-C₁₀, BTEXN.

Soil Vapour

Summa canister sampling of soil vapour from four (4) landfill gas bores was undertaken, with one duplicate sample, for analysis of the following:

- TO-15X VOCs (82 analytes); and
- Light hydrocarbons and gases (CO₂; O₂; CO; H₂; He, CH₄; ethane; propane; butane).

5. Regulatory Framework and Assessment Criteria

The environmental assessment was undertaken in accordance with regulatory framework and assessment criteria outlined below.

5.1 Regulatory Framework for Soil

The following regulatory guidance documents have been referenced in conducting the soil assessment for the Building D Assessment Area:

- NSW EPA Contaminated Land Guidelines Sampling Design Part 1 Application, 2022.
- NSW EPA Contaminated Land Guidelines Sampling Design Part 2 Interpretation, 2022.
- NSW EPA Waste Classification Guidelines 2014 Part 1: Classifying waste (NSW EPA, 2014).
- NSW Government Office of Environment & Heritage, Guidelines for Consultants Reporting on Contaminated Sites, 2011.
- National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013.
- National Environment Protection Council, and including ERRATA update 6 February 2014.

State Environmental Planning Policy 55 Managing Land Contamination 1998 (SEPP 55) sets out the regulatory framework for the management of contaminated land within the State of NSW. The intent of this policy is to provide for a state-wide planning approach to the remediation of contaminated land and to reduce the risk of harm to human health or any other aspect of the environment. The SEPP 55 was introduced in 1998 under the Environmental Planning and Assessment Act 1979.

SEPP 55 specifies when contamination and remediation is to be considered in determining development applications. Consideration of risk must include risks during construction and operation of the development. The former includes work safety issues as well as the potential for works to disturb contamination and cause off-site movement of chemicals.

5.2 Soil Quality Assessment Criteria

Assessment criteria has been selected to provide an appropriate indication of the environmental status of the Building D Assessment Area with consideration given to the current and future proposed commercial land use, and intrusive workers during works. ARC refers to the National Environment Protection Council (NEPC) (2013) - National Environment Protection (Assessment of Site Contamination) Amendment Measure, 1999 (ASC NEPM, 2013) for site assessment criteria as approved by the NSW EPA.

The applicable Health-based Investigation Levels (HILs) and Health Screening Levels (HSL's) for this investigation will include commercial for the building footprint and recreational for soil reuse in other open areas of the Building D Assessment Area, as follows:

 NEPM 2013 Health Investigation Levels and Health Screening Levels (HIL/HSL D – Commercial/Industrial; and C - Recreational);

- CRC Care Soil Health Screening Levels for Vapour Intrusion (HSL D Commercial/Industrial; and C – Recreational/Open Space);
- CRC Care Soil Health Screening Levels for Direct Contact –Intrusive Maintenance Workers; and
- HEPA PFAS National Environmental Management Plan Version 2.0 Human Health Investigation Levels (HILs) Industrial / Commercial.

The applicable Ecological-based Investigation Levels (EILs) and Ecological Screening Levels (ESL's) for this investigation will include the following:

- Maintenance of Ecosystems Modified and Highly Modified Ecosystems: NEPM 2013 Ecological Investigation Levels and Ecological Screening Levels (commercial/industrial and public open space); and
- HEPA PFAS National Environmental Management Plan Version 2.0 Ecological Direct & Indirect Exposure.

In the absence of soil characteristic data, the lowest NEPM added contaminant limit (ACL) value it has been adopted as the site-specific EILs.

With respect to asbestos containing materials (ACM), ARC has adopted a criterion of "no visible ACM" in surface soils (upper 10 cm) as well as Western Australia Department of Health (WA DoH) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2009).

The ecological and human health "investigation levels" are not intended to be interpreted as "maximum permissible levels", "clean up levels" or "safe levels", rather, they are levels at which further investigation or assessment should be undertaken to provide assurance that unacceptable contamination does not occur. Subsequent assessment on a site-specific basis often results in higher levels being acceptable. However, since the "investigation levels" are generally set at conservatively low levels, they are often taken to be the acceptable levels.

5.2.1 Soil Waste Classification

Soil waste to be removed from site will be categorised in accordance with NSW EPA's Waste Classification Guidelines Part 1: Classifying Waste 2014 (NSW EPA, 2014). The waste classification guideline presents criteria for classifying waste soil into the following categories:

- General Solid Waste: value < CT1;
- Restricted Solid Waste: value >CT1 but <CT2;
- Hazardous Waste: value > CT2.

The classification of soil at the Site for off-site disposal is beyond the scope of this investigation and further data would need to be collected before any classification could be reached. However, guideline values have been adopted to allow preliminary interpretation of the soil contaminant concentrations and its classification based on the data collected to date for indicative purposes.

5.3 Soil Vapour Assessment Criteria for Protection of Human Health

The National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013) provides soil vapour Health Screening Levels (HSLs) for vapour intrusion for the protection of site users from vapours emanating from impacted soil. The screening levels provide a trigger for additional assessment or remediation. The NEPM also provides soil vapour investigation levels for human health.

Further, the CRC CARE Technical Report No. 10 (2011) provides HSLs for vapour intrusion to intrusive maintenance workers in shallow trenches.

The HSLs have been developed to assess risk based on different geological settings, which directly influence vapour migration and the potential risks posed. Soil logging identified fill material of varying composition underlying the Building D Assessment Area. As such, the HSLs derived for sand-based geology have been adopted, with soil vapour between 0 and 8 mbgl for commercial/industrial land use and intrusive maintenance workers (shallow trench) at 0 to <2 mbgl.

5.4 Regulatory Framework for Landfill Gas

The following regulatory guidance documents have been referenced in conducting the landfill gas assessment for the Building D Assessment Area:

- NSW EPA Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases, 2020 (NSW EPA, 2020).
- NSW EPA, Environmental Guidelines, Solid Waste Landfills, Second Edition, 2016;
- British Standard, 2007, 'BS8485:2007 Code of Practice for the Characterization and Remediation from Ground Gas in Affected Developments';
- British Standards Institution, 2015, 'BS 8485:2015 Code of Practice For The Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings'.
- Construction Industry Research and Information Association (CIRIA) Publication C665, 2007, 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'; and
- Construction Industry Research and Information Association (CIRIA), 1995, 'Risk assessment for methane and other gases from the ground, Report 152'.

5.5 Landfill Gas Risk Assessment

The NSW EPA, 2020 publication provides guidance for the assessment and management of sites impacted by hazardous ground gases with both assessment criteria and a risk assessment framework.

The landfill gas assessment criteria are sourced from the NSW EPA Environmental Guidelines: Solid Waste Landfills which was updated in 2016. The assessment criteria provided for sub-surface landfill gas concentrations is for perimeter monitoring bores and not those installed within the waste material and as such is not relevant to this assessment. However, the criteria provided for the assessment of surface emissions of 0.05% v/v methane has been adopted.

5.5.1 Characteristic Gas Situation

In order to determine the risk posed by landfill gas in the subsurface, reference is typically made to Gas Screening Values (GSV) which incorporates both flow and concentrations (NSW EPA, 2020 and CIRIA, 2007). This was adopted for the quantitate risk assessment via screening of calculated GSVs.

The screening process uses the GSV to determine the characteristic gas situation of a site, which in turn is used to influence the approach to be taken to property developments and the mitigation / protection measures that may need to apply.

ARC has applied the NSW EPA, 2020 classification system and determined a risk rating based on GSV for each soil gas bore based on current results. These have been used to complete a quantitative risk assessment, as discussed in detail in *Section 8.1*.

6. Field and Laboratory Results

6.1 Soil Results

6.1.1 Site Geology

Based on a review of borelogs from the site investigation of the Building D Assessment Area, it is considered that the waste material has been capped with imported fill material at varying depths. Imported fill material was noted to contain a combination of sandy silts, gravels, clay and fine-medium grained sands.

Waste below the imported landfill capping material varies considerably in depth and composition across the Building D Assessment Area. Waste composition is summarised in *Table 6.1*. Borelogs are presented in *Appendix C*.

Location	Maximum Depth of Capping Material	Geological Description of Waste Below Capping Material
LFG01	>2.0 mbgl	Waste not encountered. Termination of borehole at 2.0 mbgl.
LFG02	1.7 mbgl	FILL: Silty Clay, fragments of wood, glass and metal, black, soft, medium-high plasticity.
LFG03	4.0 mbgl	FILL: Silty Clay, fragments of wood, glass and metal, black, soft, medium-high plasticity.
LFG04	3.0 mbgl	FILL: Clay, brick, glass and wood fragments, dark grey with red/brown mottling, soft, medium-high plasticity.
SB01	>1.3 mbgl	Waste not encountered. Termination of borehole due to refusal at 1.3 mbgl.

Based on the above summary, landfill capping is of greatest thickness in the southeast extent of the assessment area. Waste material in this area was also noted to consist of more anthropogenic inclusions than other areas, such as brick fragments. However, due to termination of LFG01 and SB01 at 2.0 and 1.3 mbgl, respectively, maximum depth of capping is unknown in the western extent of the assessment area.

6.1.2 Soil Investigation Field Observations

Odours and / or staining during sampling was noted as follows:

- No staining was observed during soil sampling at any locations;
- A decomposition odour was noted during drilling as follows;
 - LFG02 minor decomposition odour at a depth of 1.7mbgl;
 - LFG03 minor decomposition odour at a depth of 3.4mbgl increasing to strong decomposition odour at a depth of 4mbgl; and

- LFG04 some decomposition odour at a depth of 2mbgl and strong decomposition odour at a depth of 5mbgl.
- Anthropogenic inclusions within fill material were glass fragments, crushed brick, wood pieces, waste fragments, gravels and metal pieces.

Field screening results, including visual and olfactory observations of the soil matrix and the PID head space field measurements, are included in the bore logs presented in *Appendix C*.

6.1.3 Soil Analytical Results

Soil analytical results and adopted assessment criteria are presented in *Attached Table 1*. The NATA certified laboratory reports and accompanying Chain of Custody (CoC) documentation are included with the laboratory reports included within *Appendix E*. The analytical results exceeding adopted assessment criteria are summarised in **Table 6.2**.

Analyte	Results		Criteria Exceeded		
	Soil ID	Concentration (mg/kg)	Criteria (mg/kg)	Source	
>C16-C34 Fraction (F3)	LFG03_4.0 LFG04_5.0	730 1,380	300	NEPM 2013 Table 1B(6) ESLs for Public Open Space	
Lead	LFG03_4.0 LFG04_5.0	473 108	100 400	NSW 2014 General Solid Waste CT1 (No Leaching) NSW 2014 Restricted Solid Waste CT2 (No Leaching)	
Zinc	LFG03_4.0 LFG04_0.5 LFG04 _2.0** LFG04_5.0	337 101 87** 226	70 110	NEPM Site-specific EILs - Public Open Space NEPM Site-specific EILs - Commercial and Industrial	
Benzo(a) pyrene	LFG03_1.5	1.5	0.7	NEPM 2013 Table 1B(6) ESLs for Public Open Space	

 Table 6.2
 Exceedances of Adopted Soil Assessment Criteria

Note: ** represents where a duplicate result has been adopted due to exceeding criteria, where the primary sample did not exceed.

Laboratory results also indicated that:

- Exceedances of the adopted assessment criteria were limited to soil bores LFG03 and LFG04.
- All samples collected within the top 1.0 m had reported results below the adopted assessment criteria, with the exception of one exceedance of ecological criteria for zinc.
- All reported results remained below the adopted health assessment criteria for both recreational and commercial/industrial land use.
- Reported concentrations of BTEXN were below laboratory limits of reporting (LORs) in all samples, with the exception of elevated naphthalene in LFG3_4.0, which remained below criteria.
- Concentrations of phenols, chlorinated hydrocarbons, pesticides MAHs and halogenated benzenes were reported below laboratory LORs across all samples.
- Asbestos was not detected in 11 soil samples.

• PFAS was detected in sample LFG4_5.0, with all results below adopted health and ecological criteria.

6.2 Soil Vapour Results

Soil Vapour analytical results and adopted assessment criteria are presented in *Attached Table 2*. The NATA certified laboratory reports and accompanying CoC documentation are included with the laboratory reports included within *Appendix E*.

No reported concentrations within soil vapour samples exceeded the adopted human health criteria.

6.3 Soil and Soil Vapour Quality Assurance/Quality Control

To ensure that representative soil and soil vapour samples are collected, and the analytical results are representative of the actual field conditions, rigorous field and laboratory Quality Assurance and Quality Control (QA/QC) procedures were adopted during sampling and laboratory analysis.

A summary of field quality assessment/quality control (QA/QC) samples collected during the course of this GME is presented in *Table 6.3.*

Parameter	Data Quality Objective	Data Quality Assessment					
	Field QAQC						
COC Documentation	Documentation completed	Samples were provided to the laboratories with completed chain of custody documentation (attached in <i>Appendix E</i>).					
Inter and Intra- Laboratory Samples (1 in 20 samples)	Relative Percentage Difference (RPD) < 30%	Soil Intra-laboratory samples were collected at a rate of at least 1 in 20 samples (2 samples for 16 primary soil samples. All RPDs between the primary sample and inter-laboratory duplicate samples were within the acceptable range according to AS4482.1 – 2005 (refer to Attached Table 3), with the exception of:					
		 LFG03_4.0 and QC01: C₁₅-C₂₈ Fraction (130%), C₂₉-C₃₆ Fraction (100%) C₁₀-C₃₆ Fraction (Sum) (153%), >C₁₆-C₃₄ Fraction (136%), >C₁₀-C₄₀ Fraction (Sum) (149%), lead (68%), nickel (84%) and zinc (82%); and 					
		 LFG04_2.0 and QC02: PAHs (Sum of total) (82%). 					
		These elevated RPDs are not considered to impact the quality of the data because both the primary and duplicate samples either exceeded or did not exceed the adopted assessment criteria. The only exceptions to this are for >C16-C34 Fraction (only primary exceeds) and zinc (only duplicate exceeds). As such, the zinc value for the primary sample has been adopted.					
		<u>Soil Vapour</u>					
		Intra-laboratory samples were collected at a rate of at least 1 in 20 samples (1 sample for 4 primary soil vapour samples). All RPDs between the primary sample and inter-laboratory duplicate samples were within the acceptable range according to AS4482.1 – 2005 (refer to <i>Attached Table 4</i>).					
		Note that RPDs > 50% due to differences where concentrations were reported less than 10 times the detection limits, are not considered to impact the quality of the data.					
		inter-haboratory samples were not collected for this assessment					

Table 6.3 Data Quality Objectives

Parameter	Data Quality Objective	Data Quality Assessment
Blank Samples (Rinsate, Trip Blank, Trip Spike)	Concentrations at or near the Limit of Reporting (LOR)	Analytical results for the blank samples analysed are in <i>Attached Table 5a</i> and <i>5b</i> . Concentrations reported for the trip blank sample TRB1 were all less than the LOR, therefore no cross contamination during transit to the laboratory has occurred. Concentrations reported for the rinsate sample RB1 were all less than the LOR, therefore correct rinsing techniques have been employed.
Handling and Preservation	Samples received intact and cold (near 4°C)	The soil samples were received by the laboratory cooled to a measured ambient temperature of 8.2°C, with ice present in the eskies.
Laboratory QAQC	;	
Holding Time	Samples analysed within specified holding times	 Samples were analysed within recommended holding times for the analysis requested, with the exception of: pH for soil samples (1 day overdue); and TPH/TRH/BTEXN for the trip blank sample (1 day overdue).
Method Blank Samples (1 in 20 samples)	Concentrations at or below the LOR	The laboratory analysis of method blank samples showed all blank results below the laboratory reporting limits.
Laboratory Duplicate Samples (1 in 20 samples)	RPD < 50% or as per laboratory requirement	The laboratory analysis of duplicate samples showed all samples within acceptable limits and with adequate frequency.
Laboratory Control Samples (1 in 20 samples)	Recovery 75– 125% or as per laboratory requirement	 Laboratory control spike recoveries showed all results within the acceptable range, with the exception of: Phenolic compounds; and Polynuclear Aromatic Hydrocarbons. Laboratory control spike recoveries showed all results with adequate frequency
Matrix Spikes (1 in 20 Samples)	Recovery 75– 125% or as per laboratory requirement	Matrix spike recoveries were all within the laboratory requirements and with adequate frequency.
Surrogate (Every Sample)	Recovery with statistically derived QC limits or 70–130%	The laboratory analysis of surrogate recovery samples showed all results within the range 70 – 130% for all regular sample matrices.
Laboratory LORs	LORs lower than adopted guidelines	Limits of reporting for groundwater samples were deemed to be sufficiently low to enable comparison of contaminant concentrations with adopted assessment criteria.

Overall, the data quality information provides confidence that the soil and groundwater data is of sufficient quality (in terms of completeness, comparability, representativeness, precision and accuracy) and that the analytical data is suitable for the purposes of this assessment.

6.4 Landfill Gas Monitoring Results

In order to prevent underestimating potential LFG emissions due to barometric pressure differentials, the surface emissions walkover and landfill gas bore monitoring was carried out during falling barometric conditions measured across all three days of the surveying as shown in the pressure differentials between 9am and 3pm presented in *Appendix G* for the dates that landfill gas monitoring works were undertaken (BoM, 2023).

6.4.1 Surface Emissions Monitoring Survey

A Landfill Gas surface emissions walkover survey was conducted on 22 June 2023 across the former Landfill area and within all on-site and adjacent utility pits in accordance NSW EPA, 2020.

The highest concentration of methane measured within any utility pits in the footprint of the proposed building extension was 6.3 ppm, which is below the NSW EPA 2020 threshold level of 500 ppm for corrective action. No odours were noted during the surface emissions walkover.

The monitoring locations of the surface emissions walkover survey are presented in Figure 3.

6.4.2 Landfill Gas Risk Assessment

Based on the results of this assessment and a review of historically reported landfill gas results, methane is considered the primary gas of concern given due to its presence in high concentrations and its explosive properties. Detected concentrations of carbon dioxide also pose a potential asphyxiation risk and health risk to future site occupants and intrusive maintenance workers.

For landfill gases, NSW EPA 2020 outlines the approach to Level 2 risk assessment, based on site-specific ground gas measurements, as summarized in *Table 6.4*.

Site Gas Characterisation	Risk Classification	GSV Threshold (L / hr)	Additional Factors	Typical Sources
CS1	Very Low	<0.07	Typically, <1% methane concentration and <5% carbon dioxide concentration (otherwise consider an increase to CS2)	Natural soils with low organic content Typical fill
CS2	Low	0.07 to <0.7	Borehole flow rate not to exceed 70 L/hr; otherwise consider increase to CS 3	Natural soil with high organic content Fill
CS3	Moderate	0.7 to <3.5	-	Old inert waste landfill Flooded mine workings
CS4	Moderate to High	3.5 to <15	Consider need for Level 3 Risk Assessment	Mine workings susceptible to flooding Closed putrescible waste landfill
CS5	High	15 to <70	Level 3 Risk Assessment Required	Shallow, un- flooded abandoned mine workings

 Table 6.4
 GSV Values and Characteristic Situation

Site Gas Characterisation	Risk Classification	GSV Threshold (L / hr)	Additional Factors	Typical Sources	
CS6 Very High		>70		Recent putrescible waste landfill.	
Source (NSW EPA, 2020 – Table 7)					

If maximum measured methane concentration exceeds 20%, increase to CS3 (NSW, EPA 2020).

The screening process uses the Gas Screening Value (GSV) to determine the characteristic gas situation of a Building D Assessment Area, which in turn is used to influence the approach to be taken to property developments and the mitigation / protection measures that may need to apply.

The GSV is an overall site value, not an individual borehole value or an event value. A worst-case GSV has been calculated from the highest flow rate and highest concentration, from any monitoring event.

For the purpose of developing the LFG design and assessing the appropriate levels of protection required for the building extension, approximate gas screening values (GSV = maximum gas concentration multiplied by maximum gas flow rate) has been calculated in general accordance with the NSW EPA 2020.

6.4.3 Sub-surface Landfill Gas Monitoring

Three (3) rounds of monitoring for the four (4) LFG monitoring bores were conducted by ARC Environmental.

A summary of landfill gas monitoring results collected during monitoring including methane, carbon dioxide, oxygen, balance and flow rate are presented in *Table 6.5*.

Landfill Gas Bore	Date	Peak Flow Rate (L/hr)	Peak CH₄ (%v/v)	Peak CO ₂ (%v/v)	GSV CH4 (L/hr)	GSV CO ₂ (L/hr)	Characteristic Situation
LFG01	25/05/2023	5.1	6.2	7.7	0.3162	0.3927	-
	16/06/2023	-8.5	1.7	5.7	-0.1445	-0.4845	-
	22/06/23	0.1	2.5	9.0	0.0025	0.009	-
LFG02	25/05/2023	-0.2	0.1	6.6	-0.0002	-0.0132	-
	16/06/2023	0.0	0.0	5.5	0	0	-
	22/06/23	0.0	5.1	17.5	0	0	-
LFG03	25/05/2023	0.0	63.1	8.9	0	0	-
	16/06/2023	0.2	65.5	13.2	0.131	0.00264	-
	22/06/23	0.0	75.0	12.9	0	0	-
LFG04	25/05/2023	-0.1	89.1	5.6	-0.0891	-0.0056	-
	16/06/2023	0.1	67.7	10.7	0.0677	0.0107	-
	22/06/23	0.1	47.9	10.7	0.0479	0.0107	-
Maximum Values		5.1	89.1	17.5	4.54	0.89	CS4

 Table 6.5
 Summary of Sub-surface Landfill Gas Monitoring Readings

The worst-case scenario for the Building D Assessment Area has a GSV of 4.54 L/hr for methane and 0.89 L/hr for carbon dioxide, indicating that the Characteristic Situation is 4 (CS4). A CS of 4 would lead to the requirement of gas protection measures as detailed in *Section 6.5*.

In accordance with NSW EPA 2020 guidance, a Level 3 full quantitative risk assessment as an additional factor is to be considered. It is considered that a Level 3 Risk Assessment is not required, based on the following:

- quantitative risk analysis is only required to resolve bulk ground gas problems where the CS is 5 or 6;
- while it may be worthwhile in other cases (i.e. CS is 4) if there is a prospect of significantly reducing the cost of protective measures, it is considered that the additional time and costs would outweigh the further assessment on this project. Quantitative risk analysis is both expensive and time-consuming; and
- the environmental investigation undertaken over a number of years for several expansions to the GWS Giants buildings has provided for a comprehensive data set to allow confidence that the worst-case scenario has been allowed for in consideration of gas protection measures.

6.5 Gas Protection Measures

It is recommended that the level of protection required for a site be determined using the following approach, which has been adapted for conditions in NSW from the procedures outlined in British Standard 8485:2007.

In accordance with NSW EPA, 2020, an appropriate guidance value is designated based on building type and gas characteristic situation, presented in *Table 6.6* and based on the Building D Assessment Area results:

- Standard commercial building; and
- Characteristic situation is 4 (CS4).

	Required gas protection guidance values					
Gas Characteristic Situation (CS)	Low density residential	Medium-high density residential (strata title)	Public buildings, schools, hospitals, shopping centres	Standard, commercial buildings (offices, etc)	Large commercial (warehousing) and industrial buildings	
1	0	0	0	0	0	
2	3	3	3	2	1 ^(a)	
3	4	3	3	2	2	
4	6 ^(b)	5 ^(b)	5	4	3	
5	_ (b)	6 ^(b)	6 ^(c)	5	4	
6	_ (d)	_ (d)	6 ^(c)	6	6	

Table 6.6Guidance Values for Gas Protection

(a) If maximum measured methane concentration exceeds 20%, increase to CS3.

(b) Residential development not recommended at CS4 and above without pathway intervention and high level of management.

(c) Consideration of evacuation issues and social risk required.

(d) Level 3 Risk Assessment is required.

Results give a guidance value of 4. When a guidance value has been obtained, proposed gas protection measures and combinations of measures may be evaluated using the scores listed in *Table 6.6.* A combination of protection measures appropriate for site conditions should be selected such that the combined score equals or exceeds the required guidance value.

Score **Comments Measure of System Element** Venting and dilution measures Passive sub-floor ventilation with very good 2.5 performance (steady state concentration of methane over 100% of ventilation layer remains below 1% v/v at a wind speed of 0.3 m/s) Passive sub-floor ventilation with good performance 1.5 If passive ventilation cannot meet this (steady state concentration of methane over 100% of requirement an active system will be required. ventilation layer remains below 1% v/v at a wind speed of 1 m/s and below 2.5% v/v at a wind speed of 0.3 m/s). Subfloor ventilation with active abstraction or 2.5 Robust management systems must be in place pressurization. to ensure long-term operation and maintenance. Ventilated car park (basement or undercroft). 4.0 Assumes that car park is vented to deal with exhaust fumes in accordance with BCA(a) requirements. Floor Slabs Reinforced concrete ground bearing floor slab 0.5 It is good practice to install ventilation in all foundation systems to effect pressure relief as 1.0 Reinforced concrete ground bearing foundation raft a minimum. Breaches in floor slabs, such as with limited service penetrations cast into slab joints, have to be effectively sealed against gas ingress to maintain these performances. Reinforced concrete cast in situ or post tensioned 1.5 suspended slab with minimal service penetrations and water bars around all penetrations and at joints 2.0 Fully tanked basement Membranes 2.0 Membrane performance depends on the Proprietary gas-resistant membrane with a gas transmission rate for the gases of concern on the site membrane material and thickness specified, that is certified and appropriate to the overall design design and quality of the installation, protection of the gas protection system. It should be installed by from and resistance to damage after a specialist to an appropriate level of workmanship installation, and the integrity of joints in with documented internal CQC, including integrity membranes that require joints. Materials that testing (e.g. tracer gas or smoke testing), under offer some degree of self-sealing and repair independent CQA carried out by a certified are preferred. Long-term performance depends specialist(e) or appropriately qualified and on the durability of the material, including its experienced professional with independent resistance to chemical degradation in the environment in which it is installed verification of the entire process **Monitoring and Detection Alarms** Intermittent monitoring using hand-held equipment 0.5 Monitoring and alarm systems are only valid as part of a combined gas protection system. Permanent monitoring system installed in the 1 Where fitted, permanent systems should be occupied space of the building installed in the underfloor venting system but can also be provided in the occupied space as 2 Permanent monitoring system installed in the a back-up underfloor venting / dilution system Pathway Intervention Vertical barriers Required for residential and public buildings at

Table 6.7Sources of Protection Measures

Measure of System Element	Score	Comments
Vertical venting systems	-	CS4 and above.
Source: NSW EPA, 2020.		

7. Conclusions

7.1 Conclusions

This soil and landfill gas risk assessment was undertaken to assess the risk of contamination at the Building D Assessment Area associated with the former landfill and the suitability of the Building D Assessment Area for the planned Building D development, including a swimming pool. In order to achieve project objectives, five (5) soil bores were advanced and four (4) of these bores were converted to landfill gas bores. Landfill gas bores were monitored three (3) times over a period of six weeks, followed by a surface emissions and sub-surface utility survey of the Assessment Area.

Findings of the SLFGRA were as follows:

- Landfill capping was observed to have greatest thickness in the centre and southeast of the Building D Assessment Area. Capping thickness varied from 1.7 to 4 mbgl;
- Waste beneath capping was observed to contain brick, glass, wood fragments and metal pieces;
- Concentrations of >C₁₆-C₃₄ Fraction (F3), zinc and benzo(a)pyrene were recorded in exceedance of the adopted ecological criteria for recreational open space and commercial land use between drilling depths of 0.5 mbgl and 5 mbgl. Although the adopted NEPM EILs being applied are only relevant to the top 2 m of the soil profile, comparison has been made to all samples to consider potential reuse of excavated material elsewhere on the Site during the redevelopment works;
- Concentrations of lead in soil at depths greater than 4 mbgl in the southeast of the Assessment Area exceeded NSW CT1 waste thresholds and CT2 thresholds in the centre;
- Soil analytical results did not exceed any of the adopted human health criteria. Therefore, excavated soil from the Building D development area may be reused at the Site, subject to SOPA approval;
- Soil vapour results did not exceed any of the adopted assessment criteria for commercial/industrial land use. Identified volatile organic compounds in landfill gas need to be taken into consideration in selection of the landfill gas protection measures (i.e. membrane) to be implemented;
- The worst-case scenario for the Building D Assessment Area has a GSV of 4.54 L/hr for methane and 0.89 L/hr for carbon dioxide, indicating that the Characteristic Situation is 4 (CS4). A CS of 4 would lead to the requirement of gas protection measures;
- In accordance with NSW EPA 2020 guidance, a Level 3 full quantitative risk assessment as an additional factor is to be considered. It is considered that a Level 3 Risk Assessment is not required;
- Landfill gas protection measures must be implemented into the proposed Building D design to meet the required score of 4 in accordance NSW EPA, *Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases*, 2020. The proposed gas mitigation measures and the slab, footings and piling types should be documented in a mitigation design specification document.

8. Limitations

This report was prepared in accordance with the scope of work outlined and/or referenced within this report and subject to the applicable cost, time and other constraints. ARC Environmental performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession. No warranties, expressed or implied, are made.

ARC Environmental makes no warranty concerning the suitability of the site for any purpose or the permissibility of any use, development or re-development of the site. Use of the site for any purpose may require planning and other approvals and, in some cases, EPA and accredited site auditor approvals. ARC Environmental offers no opinion as to the likelihood of obtaining any such approvals, or the conditions and obligations which such approvals may impose, which may include the requirement for additional environment works.

Except as otherwise stated, ARC Environmental's assessment is limited strictly to identifying specified environmental conditions associated with the subject site and does not evaluate structural or geotechnical conditions of any part of the site (including any buildings, equipment or infrastructure).

This assessment is based on site conditions observed by ARC Environmental personnel in the course of performing their work, sampling and analyses described in the report, and information provided by FDC Construction ("the Client"). Conclusions and recommendations made in the report are the professional opinions of the ARC Environmental personnel involved with the project and, while normal checking of the accuracy of data has been conducted, ARC Environmental assumes no responsibility or liability for errors in data obtained from such sources, regulatory agencies and/or any other external sources, nor from occurrences outside the scope of this project.

The information relating to the soil and groundwater conditions in this document is considered to be accurate at the date of site issue. Subsurface conditions can vary across a particular site, which cannot be wholly defined by investigation. As a result, it is unlikely that the results and estimations presented in this report will represent the extremes of conditions within the site. Subsurface conditions including impact concentrations can change in a limited period of time.

Only the chemicals specifically referred to in this report have been considered. ARC Environmental makes no statement or representation as to the existence (or otherwise) of any chemicals other than those specifically referred to herein. Except as otherwise specifically stated in this report, ARC Environmental makes no warranty or representation as to the presence or otherwise of asbestos and/or asbestos containing materials ("ACM") on the site.

ARC Environmental is not engaged in environmental consulting and reporting for the purpose of advertising, sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity or investment purposes.

This report has been prepared for the sole use of the Clients and the appointed EPA Accredited Environmental Auditor. The report may not be relied upon by any other party without the express written agreement of ARC Environmental. The provision of a copy of this report to any third party is provided for informational purposes only and any reliance on this report by a third party is done so at their own risk and ARC Environmental disclaim all liability to such third party to the extent permitted by law. Any use of this report by a third party is deemed to constitute acceptance of this limitation.

9. References

- ARC Environmental 2019, Environmental and Geotechnical Site Assessment: 1 Olympic Boulevard, Sydney Olympic Park, NSW, 16 December 2019.
- ARC Environmental 2020, Updated Landfill Gas Risk Assessment: 1 Olympic Boulevard, Sydney Olympic Park, NSW, 17 January 2020.
- British Standard, 2007, 'BS8485:2007 Code of Practice for the Characterization and Remediation from Ground Gas in Affected Developments'.
- British Standards Institution, 2015, 'BS 8485:2015 Code of Practice For The Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings'.
- Construction Industry Research and Information Association (CIRIA) Publication C665, 2007, 'Assessing Risks Posed by Hazardous Ground Gases to Buildings.
- Construction Industry Research and Information Association (CIRIA), 1995, 'Risk assessment for methane and other gases from the ground, Report 152.
- Douglas Partners 2013, Report on Landfill Gas Assessment and Mitigation Design GWS Giants Administrative Facility Development, Olympic Park Boulevard, Sydney Olympic Park.
- Douglas Partners 2020, Report on Statutory Site Audit psm-N-19 (B5) Proposed Extension of Sporting Clubrooms Olympic Boulevard, Homebush.
- ESG Environmental 2020, Recommendations for the Design of the Ground Gas Management System for the Revised New Additions to the GWS Giants Clubhouse Version 5 1 Olympic Boulevard, Sydney Olympic Park NSW.
- Friebel & Nadebaum, 2011: CRC CARE Technical Report no. 10 'Health screening levels for petroleum hydrocarbons in soil and groundwater'.
- Heads of EPA Australia and New Zealand (HEPA) 2020, PFAS National Environmental Management Plan Version 2.0.
- National Environment Protection Council, April 2013: National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013.
- National Environment Protection Council, and including ERRATA update 6 February 2014.
- NSW EPA Contaminated Land Guidelines Sampling Design Part 1 Application, 2022.
- NSW EPA Contaminated Land Guidelines Sampling Design Part 2 Interpretation, 2022.
- NSW EPA's Waste Classification Guidelines Part 1: Classifying Waste 2014.
- NSW EPA 2020, Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases, Amended May 2020.
- NSW EPA, Environmental Guidelines, Solid Waste Landfills, Second Edition, 2016.
- Sinclair Knight Mertz 2014, Site Audit Report 235 by Dr Ian Swane, GWS Giants Training and Administrative Facility, Sydney Olympic Park Part of Lot 200 in DP 1041756.

• Sydney Olympic Park Authority 2009, Remediated Lands Management Plan (extract) (SOPA RLMP, 2009).

Figures

Tables

					ТРН								TRH				т	RH - (Silica	Gel Cleanu	p)
	C10-C14 Fraction (SG)	C10-C36 Fraction (Sum)(SG)	C15-C28 Fraction (SG)	C29-C36 Fraction (SG)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	C6-C10 Fraction	C6-C10 minus BTEX (F1)	>C10-C16 Fraction	>C10-C16 Fraction minus Naphthalene (F2)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	>C10-C16 Fraction (SG)	>C16-C34 Fraction (SG)	>C34-C40 Fraction (SG)	>C10-C40 Fraction (SG)
I <u></u>	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	50	50	100	100	10	20	50	50	50	10	10	50	50	100	100	50	50	100	100	50
NEPM 2013 Table 1A(1) HILs Rec C Soil																				
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil																				
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)											260		NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)											370		NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)											630		NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)											NL		NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)											NL		NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)											NL		NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)											NL		NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)											NL		NL							
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind																				
NEPM Site-specific EILs - Commercial and Industrial																				
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space																				
NEPM Site-specific EILs - Urban Res & Public Open Space																				
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil											215	170	170	1,700	3,300			1,700	3,300	
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil											180	120	120	300	2,800			300	2,800	
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers										82,000		62,000		85,000	120,000					
CRC Care HSL-C Recreational / Open Space										5,100		3,800		5,300	7,400					
CRC Care HSL-D Commercial / Industrial										26,000		20,000		27,000	38,000					
PFAS NEMP 2020 Ecological direct exposure																				
PFAS NEMP 2020 Ecological indirect exposure																				
PFAS NEMP 2020 Commercial/Industrial (HIL D)																				
NSW 2014 General Solid Waste CT1 (No Leaching)					650				10,000											
NSW 2014 Restricted Solid Waste CT2 (No Leaching)					2,600				40,000											

Field ID	Date	Depth	Sample Type																				
LFG1 0.5	18 May 2023	0.5	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-
LFG1 1.0	18 May 2023	1	Normal	<50	<50	<100	<100	<10	-	-	-	-	<10	-	-	-	-	-	-	<50	<100	<100	<50
LFG1 1.5	18 May 2023	1.5	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-
LFG2 0.5	18 May 2023	0.5	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-
LFG2 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.5	18 May 2023	1.5	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-
LFG2 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 0.5	18 May 2023	0.5	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	110	<100	110	-	-	-	-
LFG3 1.5	18 May 2023	1.5	Normal	-	-	-	-	<10	<50	110	120	230	<10	<10	<50	<50	190	100	290	-	-	-	-
LFG3 3.4	18 May 2023	3.4	Normal	<50	<50	<100	<100	<10	-	-	-	-	<10	-	-	-	-	-	-	<50	<100	<100	<50
LFG3 4.0	18 May 2023	4	Normal	-	-	-	-	<10	<50	520	300	820	14	14	50	<50	730	170	950	-	-	-	-
QC1	18 May 2023	4	QA/QC	-	-	-	-	<10	<50	110	<100	110	<10	<10	<50	<50	140	<100	140	-	-	-	-

					TPH								TRH				т	RH - (Silica	Gel Cleanu	i p)
	C10-C14 Fraction (SG)	C10-C36 Fraction (Sum)(SG)	C15-C28 Fraction (SG)	C29-C36 Fraction (SG)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)	C6-C10 Fraction	C6-C10 minus BTEX (F1)	>C10-C16 Fraction	>C10-C16 Fraction minus Naphthalene (F2)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	>C10-C16 Fraction (SG)	>C16-C34 Fraction (SG)	>C34-C40 Fraction (SG)	>C10-C40 Fraction (SG)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	50	50	100	100	10	20	50	50	50	10	10	50	50	100	100	50	50	100	100	50
NEPM 2013 Table 1A(1) HILs Rec C Soil																				
NEPM 2013 Table 1A(1) Hills Comm/ind D Soli											000		NU							
NEPM 2013 Table 1A(3) Comm/ind D Soil HSL for Vapour Intrusion, Sand (0-1m)											260		NL							
NEPM 2013 Table 1A(3) Comm/ind D Soil HSL for Vapour Intrusion, Sand (1-2m)											370		NL NI							
NEPM 2013 Table 1A(3) Comm/ind D Soil HSL for Vapour Intrusion, Sand (2-4m)											030 NI		INL NI							
NEPM 2013 Table 1A(3) Commining D Soil HSL for Vapour Intrusion, Sand (2–4m)											NL		INL NI							<u> </u>
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 111)											NL		INL NI							<u> </u>
NEPM 2013 Table TA(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-211)											INL NIL		INL							<u> </u>
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)	·										NL		INL NI							<u> </u>
NEPM 2013 Table TA(3) Rec C Soil HSL for Vapour Intrusion, Sand (>-4m)											INL		INL							
NEDM Site apositio Ella Commercial and Industrial																				
NEDM Site apositio Ella Urban Ros & Public Open Space																				<u> </u>
NEDM 2012 Table 1P(6) ESL o for Comm/Ind. Coorse Seil											215	170	170	1 700	2 200			1 700	2 200	<u> </u>
NEPM 2013 Table 1B(6) ESLs for Urban Res. Coarse Soil											180	120	120	300	2,800			300	2,800	
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers										82 000	100	62,000	120	85,000	120.000			000	2,000	
CRC Care HSL-C Recreational / Open Space										5 100		3 800		5 300	7 400					
CRC Care HSL-D Commercial / Industrial										26,000		20,000		27 000	38,000					<u> </u>
PFAS NEMP 2020 Ecological direct exposure										20,000		20,000		21,000						
PFAS NEMP 2020 Ecological indirect exposure																				
PFAS NEMP 2020 Commercial/Industrial (HIL D)																				
NSW 2014 General Solid Waste CT1 (No Leaching)					650				10,000											
NSW 2014 Restricted Solid Waste CT2 (No Leaching)					2,600				40,000											

Field ID	Date	Depth	Sample Type																				
LFG4 0.5	18 May 2023	0.5	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-
LFG4 2.0	18 May 2023	2	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-
QC2	18 May 2023	2	QA/QC	-	-	-	-	<20	<20	<50	53	53	<20	<20	<50	<50	<100	<100	<100	-	-	-	-
LFG4 5.0	18 May 2023	5	Normal	-	-	-	-	<10	<50	950	600	1,550	12	12	60	60	1,380	330	1,770	-	-	-	-
SB1 0.5	18 May 2023	0.5	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-
SB1 1.0	18 May 2023	1	Normal	-	-	-	-	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	-	-	-	-

Statistics	_									_										
Number of Results	2	2	2	2	16	14	14	14	14	16	14	14	14	14	14	14	2	2	2	2
Number of Detects	0	0	0	0	0	0	4	4	5	2	2	2	1	5	3	5	0	0	0	0
Minimum Concentration	<50	<50	<100	<100	<10	<20	<50	53	<50	<10	<10	50	<50	<100	100	<50	<50	<100	<100	<50
Minimum Detect	ND	ND	ND	ND	ND	ND	110	53	53	12	12	50	60	110	100	110	ND	ND	ND	ND
Maximum Concentration	<50	<50	<100	<100	<20	<50	950	600	1,550	<20	<20	60	60	1,380	330	1,770	<50	<100	<100	<50
Maximum Detect	ND	ND	ND	ND	ND	ND	950	600	1,550	14	14	60	60	1,380	330	1,770	ND	ND	ND	ND
Average Concentration *	25	25	50	50	5.3	24	155	112	213	6.3	6.5	29	28	214	82	251	25	50	50	25
Median Concentration *	25	25	50	50	5	25	50	50	25	5	5	25	25	50	50	25	25	50	50	25
Standard Deviation *	0	0	0	0	1.2	4	261	156	439	2.9	3.1	11	9.4	381	79	502	0	0	0	0
95% UCL (Student's-t) *	25	25	50	50	5.86	25.83	278.2	186.1	421.4	7.59	7.959	34.52	31.93	394.5	119.5	488.4	25	50	50	25
% of Detects	0	0	0	0	0	0	29	29	36	12	14	14	7	36	21	36	0	0	0	0
% of Non-Detects	100	100	100	100	100	100	71	71	64	88	86	86	93	64	79	64	100	100	100	100

Notes:

* Where NEPM characterisation results were not available, ARC used Added Contaminant Limits (ACLs) to adopt the lowest EIL level in NEPM, assuming Ambient Background Concentration's (ABCs) were zero.

^AAccording to EPA NSW Waste Classification Guidelines (2014) Al, Ba, B, Cr (III + VI), Co, Cu, Fe, Mn, V, and Zn have not been listed with values in this table and need not be tested for.

								BTE	EXN										Metals						
					Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEX	Naphthalene (VOC)	Arsenic	Bery Ilium	Cadmium	Chromium (hexavalent)	Chromium (II+VI)	Copper	Lead	Mercury	Molybdenum	lickel	Selenium	Silver	Zinc
FOL					ті <u>д</u> /кд	0.1	<u>тід/кд</u>	<u>тту/ку</u>	під/кд 0.1	<u>тіў/ку</u>		<u>тід/кд</u>	тід/к <u>д</u>	<u>тт</u> д/кд		<u>тіў/ку</u>	111g/kg	mg/kg	ту/ку 5	ті д/кд	тіў/ку 2	тт <u>д</u> /кд	mg/kg	ті д/к д	mg/kg
	A(1) HII s Rec C Soil	1			0.1	0.1	0.1	0.2	0.1	0.3	0.2	0.5	2	90	90	300	2	17 000	600	80	2	1 200	700	2	30,000
NEPM 2013 Table 14	A(1) HILS Nec C 30	D Soil											3,000	500	90	3 600		240.000	1 500	730		6,000	10,000		400.000
NEPM 2013 Table 1/		il HSL for V/	apour Intrusion	Sand (0.1m)	3	NI	NI			230		NI	3,000	500	300	3,000		240,000	1,500	750		0,000	10,000		400,000
NEPM 2013 Table 14				Sand (0-111)	3	NI	NI			NI															
NEPM 2013 Table 14	A(3) Comm/Ind D So	il HSL for Va	apour Intrusion	Sand (2-4m)	3	NI	NI			NI		NI													
NEPM 2013 Table 14	A(3) Comm/Ind D So	il HSL for Va	apour Intrusion	Sand (2=4m)	3	NI	NI			NI		NI													
NEPM 2013 Table 14	A(3) Rec C Soil HSI	for Vanour I	Intrusion Sand (0 - 1m)	NI	NI	NI			NI		NI													
NEPM 2013 Table 14	A(3) Rec C Soil HSL	for Vapour I	Intrusion Sand	(1-2m)	NI	NI	NI			NI		NI													
NEPM 2013 Table 14	A(3) Rec C Soil HSL	for Vapour I	Intrusion Sand	(1-211) (2-4m)	NI	NI	NI			NI		NI													
NEPM 2013 Table 14	A(3) Rec C Soil HSL	for Vapour I	Intrusion Sand (>=4m)	NI	NI	NI			NI		NI													
NEPM 2013 Table 1	B(5) Generic Ell Co	omm/Ind			112					142		370	160												
NEPM Site-specific F	Ell s - Commercial an	nd Industrial										0.0	100				310*	85*	1 800*			55*			110*
NEPM 2013 Table 1	B(5) Generic Ell Ur	rban Res & F	Public Open Spa	ice	<u> </u>							170	100				0.0		1,000						
NEPM Site-specific F	Ell s - Urban Res & P	Public Open S	Snace		<u> </u>												190*	60*	1 100*			30*			70*
NEPM 2013 Table 18	B(6) ESI s for Comm	Ind Coarse	Soil		75	135	165			180							100		1,100						10
NEPM 2013 Table 1	B(6) ESI's for Urban	Res Coarse	s Soil		50	85	70			105															
CRC Care HSL - Dire	ect Contact: Intrusive	Maintenanc	ce Workers		1 100	120,000	85,000			130,000		29,000													
	acreational / Open Sr				1,100	18,000	5 300			15,000		1 900													
CRC Care HSL-D Co	ommercial / Industrial	1			430	99,000	27.000			81,000		11 000													
PEAS NEMP 2020 E		SUIRA			400	55,000	27,000			01,000		11,000													
PEAS NEMP 2020 E	cological indirect expo																								
PEAS NEMP 2020 C	commercial/Industrial																								
NSW 2014 General S	Solid Waste CT1 (No				10	288	600			1 000			100	20	20	100	A	A	100	4	100	40	20	100	A
NSW 2014 Restricted	d Solid Waste CT2 (No Leaching	1)		40	1 152	2 400			4 000			400	80	80	400	A	A	400	16	400	160	80	400	A
	(<i>)</i> /			.,	_,			.,															
Field ID	Date	Depth		Sample Type																					
LFG1 0.5	18 May 2023	0.5		Normal	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<1	<5	-	<1	-	8	16	33	<0.1	-	7	-	-	66
LFG1 1.0	18 May 2023	1		Normal	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	<5	<1	<1	< 0.5	-	-	26	<0.1	<2	5	<5	<2	-
LFG1 1.5	18 May 2023	1.5		Normal	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<1	<5	-	<1	-	11	16	31	0.1	-	7	-	-	47
LFG2 0.5	18 May 2023	0.5		Normal	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<1	<5	-	<1	-	10	17	27	0.1	-	8	-	-	50
LFG2 1.0	18 May 2023	1		Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.5	18 May 2023	1.5		Normal	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	<1	8	-	<1	-	14	28	42	0.3	-	6	-	-	45
LFG2 2.0	18 May 2023	2		Normal	- I	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 0.5	18 May 2023	0.5		Normal	<0.2	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.2	<1	<5	-	<1	-	14	19	27	<0.1	-	11	-	-	50
LFG3 1.5	18 May 2023	1.5		Normal	<0.2	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.2	<1	<5	-	<1	-	20	24	45	<0.1	-	12	-	-	55
LFG3 3.4	18 May 2023	3.4		Normal	<0.2	<0.5	<0.5	< 0.5	<0.5	-	-	-	<5	<1	<1	< 0.5	-	-	26	<0.1	<2	6	<5	<2	-
LFG3 4.0	18 May 2023	4		Normal	<0.2	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.2	2	10	-	<1	-	28	40	473	0.1	-	22	-	-	337
QC1	18 May 2023	4		QA/QC	<0.2	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.2	2	8	-	<1	-	18	41	232	0.1	-	9	-	-	141

				ВТ	EXN										Metals						
	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEX	Naphthalene (VOC)	Arsenic	Beryllium	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Zinc
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.2	0.1	0.3	0.2	0.5	2	1	0.4	0.5	2	5	5	0.1	2	2	5	2	5
NEPM 2013 Table 1A(1) HILs Rec C Soil									300	90	90	300		17,000	600	80		1,200	700		30,000
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil									3,000	500	900	3,600		240,000	1,500	730		6,000	10,000		400,000
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)	3	NL	NL			230		NL													
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)	3	NL	NL			NL		NL													
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)	3	NL	NL			NL		NL													
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)	3	NL	NL			NL		NL													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)	NL	NL	NL			NL		NL													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)	NL	NL	NL			NL		NL													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)	NL	NL	NL			NL		NL													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)	NL	NL	NL			NL		NL													
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind								370	160												
NEPM Site-specific EILs - Commercial and Industrial													310*	85*	1,800*			55*			110*
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space								170	100												
NEPM Site-specific EILs - Urban Res & Public Open Space													190*	60*	1,100*			30*			70*
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil	75	135	165			180															
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil	50	85	70			105															
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers	1,100	120,000	85,000			130,000		29,000													
CRC Care HSL-C Recreational / Open Space	120	18,000	5,300			15,000		1,900													
CRC Care HSL-D Commercial / Industrial	430	99,000	27,000			81,000		11,000													
PFAS NEMP 2020 Ecological direct exposure																					
PFAS NEMP 2020 Ecological indirect exposure																					
PFAS NEMP 2020 Commercial/Industrial (HIL D)																					
NSW 2014 General Solid Waste CT1 (No Leaching)	10	288	600			1,000			100	20	20	100	A	A	100	4	100	40	20	100	A
NSW 2014 Restricted Solid Waste CT2 (No Leaching)	40	1,152	2.400			4.000			400	80	80	400	A	A	400	16	400	160	80	400	A

Field ID	Date	Depth	Sample Type																					
LFG4 0.5	18 May 2023	0.5	Normal	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1	6	-	<1	-	15	26	40	0.2	-	12	-	-	101
LFG4 2.0	18 May 2023	2	Normal	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1	6	-	<1	-	13	14	26	<0.1	-	7	-	-	60
QC2	18 May 2023	2	QA/QC	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	-	<0.5	7.1	-	<0.4	-	16	29	41	0.2	-	14	-	-	87
LFG4 5.0	18 May 2023	5	Normal	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1	14	-	1	-	54	42	108	0.2	-	12	-	-	226
SB1 0.5	18 May 2023	0.5	Normal	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1	<5	-	<1	-	10	22	34	<0.1	-	13	-	-	55
SB1 1.0	18 May 2023	1	Normal	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1	<5	-	<1	-	8	9	18	<0.1	-	7	-	-	37

Statistics																					
Number of Results	16	16	16	16	16	14	13	14	16	2	16	2	14	14	16	16	2	16	2	2	14
Number of Detects	0	0	0	0	0	0	0	2	7	0	1	0	14	14	16	8	0	16	0	0	14
Minimum Concentration	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.2	<0.5	<5	<1	<0.4	<0.5	8	9	18	0.1	<2	5	<5	<2	37
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	2	6	ND	1	ND	8	9	18	0.1	ND	5	ND	ND	37
Maximum Concentration	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	2	14	<1	1	<0.5	54	42	473	0.3	<2	22	<5	<2	337
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	2	14	ND	1	ND	54	42	473	0.3	ND	22	ND	ND	337
Average Concentration *	0.097	0.24	0.24	0.24	0.24	0.24	0.1	0.7	5.1	0.5	0.51	0.25	17	24	77	0.11	1	9.9	2.5	1	97
Median Concentration *	0.1	0.25	0.25	0.25	0.25	0.25	0.1	0.5	2.5	0.5	0.5	0.25	14	23	33.5	0.075	1	8.5	2.5	1	57.5
Standard Deviation *	0.012	0.05	0.05	0.038	0.05	0.027	0	0.56	3.5	0	0.15	0	12	11	118	0.077	0	4.3	0	0	86
95% UCL (Student's-t) *	0.102	0.259	0.259	0.257	0.259	0.256	0.1	0.96	6.645	0.5	0.578	0.25	22.69	29.48	128.5	0.14	1	11.77	2.5	1	137.5
% of Detects	0	0	0	0	0	0	0	14	44	0	6	0	100	100	100	50	0	100	0	0	100
% of Non-Detects	100	100	100	100	100	100	100	86	56	100	94	100	0	0	0	50	100	0	100	100	0

			Inorg	anics						Phenols								CI	nlorinated H	lydrocarboi	าร				
	Moisture Content	Cyanide Total	Fluoride	Moisture Content (dried @ 103°C)	рН (Lab)	Sulphate (filtered)	3&4-Methylphenol (m&p-cresol)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2-Methylphenol	4-chloro-3-methylphenol	Pentachlorophenol	Phenol	1,1,1,2-tetrachloroethane	1,1,1-trichloroethane	1,1,2,2-tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethene	1,2-dichloroethane	Carbon tetrachloride	Chloroform	Dichloromethane	Tetrachloroethene	Trichloroethene	Vinyl chloride
	%	mg/kg	mg/kg	%	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	1	1	40	1	0.1	10	1	0.5	0.5	0.5	0.5	2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	4
NEPM 2013 Table 1A(1) HILs Rec C Soil												120	40,000										0.2	0.01	
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil												660	240,000										0.5	0.01	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)																									
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)																									
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)																									
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)																									
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind																									
NEPM Site-specific EILs - Commercial and Industrial																									
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space																									
NEPM Site-specific EILs - Urban Res & Public Open Space																									
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																								0.05	
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																								0.05	
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers																								28	
CRC Care HSL-C Recreational / Open Space																									
CRC Care HSL-D Commercial / Industrial																									
PFAS NEMP 2020 Ecological direct exposure																									
PFAS NEMP 2020 Ecological indirect exposure																									
PFAS NEMP 2020 Commercial/Industrial (HIL D)																									
NSW 2014 General Solid Waste CT1 (No Leaching)	_	320	3,000					8,000	40	4,000				200	600	26	24	14	10	10	120	172	14	10	4
NSW 2014 Restricted Solid Waste CT2 (No Leaching)		1,280	12,000					32,000	160	16,000				800	2,400	104	96	56	40	40	480	688	56	40	16

Field ID	Date	Depth	Sample Type																									
LFG1 0.5	18 May 2023	0.5	Normal	19.0	-	-	-	8.2	140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG1 1.0	18 May 2023	1	Normal	15.1	<1	90	-	-	-	<1	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<4
LFG1 1.5	18 May 2023	1.5	Normal	15.8	-	-	-	7.9	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 0.5	18 May 2023	0.5	Normal	6.5	-	-	-	8.8	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.5	18 May 2023	1.5	Normal	13.8	-	-	-	8.3	80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 0.5	18 May 2023	0.5	Normal	8.9	-	-	-	9.2	130	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 1.5	18 May 2023	1.5	Normal	15.0	-	-	-	9.8	420	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 3.4	18 May 2023	3.4	Normal	15.4	<1	180	-	-	-	<1	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<4
LFG3 4.0	18 May 2023	4	Normal	18.9	-	-	-	8.4	260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QC1	18 May 2023	4	QA/QC	18.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

			Inorg	anics						Phenols								C	hlorinated F	lydrocarbo	ns				
	Moisture Content	Cyanide Total	Fluoride	Moisture Content (dried @ 103°C)	pH (Lab)	Sulphate (filtered)	3&4-Methylphenol (m&p-cresol)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2-Methylphenol	4-chloro-3-methylphenol	Pentachlorophenol	Phenol	1,1,1,2-tetrachloroethane	1,1,1-trichloroethane	1,1,2,2-tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethene	1,2-dichloroethane	Carbon tetrachloride	Chloroform	Dichloromethane	Tetrachloroethene	Trichloroethene	Vinyl chloride
1	%	mg/kg	mg/kg	%	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	1	1	40	1	0.1	10	1	0.5	0.5	0.5	0.5	2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	4
NEPM 2013 Table 1A(1) HILs Rec C Soil												120	40,000										0.2	0.01	
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil												660	240,000										0.5	0.01	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)																									
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)																									
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)																									
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)																									
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)																									
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind																									
NEPM Site-specific EILs - Commercial and Industrial																									
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space																									
NEPM Site-specific EILs - Urban Res & Public Open Space																									
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																								0.05	
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																								0.05	
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers																								28	
CRC Care HSL-C Recreational / Open Space																									
CRC Care HSL-D Commercial / Industrial																									
PFAS NEMP 2020 Ecological direct exposure																									
PFAS NEMP 2020 Ecological indirect exposure																									
PFAS NEMP 2020 Commercial/Industrial (HIL D)																									
NSW 2014 General Solid Waste CT1 (No Leaching)		320	3,000					8,000	40	4,000				200	600	26	24	14	10	10	120	172	14	10	4
NSW 2014 Restricted Solid Waste CT2 (No Leaching)		1,280	12,000					32,000	160	16,000				800	2,400	104	96	56	40	40	480	688	56	40	16

Field ID	Date	Depth	Sample Type																									
LFG4 0.5	18 May 2023	0.5	Normal	11.6	-	-	-	8.7	130	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG4 2.0	18 May 2023	2	Normal	14.4	-	-	-	8.0	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QC2	18 May 2023	2	QA/QC	-	-	-	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG4 5.0	18 May 2023	5	Normal	17.9	-	-	-	8.3	220	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB1 0.5	18 May 2023	0.5	Normal	9.0	-	-	-	8.6	170	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB1 1.0	18 May 2023	1	Normal	10.8	-	-	-	8.7	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Statistics																									
Number of Results	15	2	2	1	12	12	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of Detects	15	0	2	1	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	6.5	<1	90	15	7.9	20	<1	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<4
Minimum Detect	6.5	ND	90	15	7.9	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	19	<1	180	15	9.8	420	<1	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<4
Maximum Detect	19	ND	180	15	9.8	420	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration *	14	0.5	135		8.6	152	0.5	0.25	0.25	0.25	0.25	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	2
Median Concentration *	15	0.5	135	15	8.5	135	0.5	0.25	0.25	0.25	0.25	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	2
Standard Deviation *	3.9	0	64		0.53	109	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95% UCL (Student's-t) *	15.83	0.5	419.1		8.849	209.1	0.5	0.25	0.25	0.25	0.25	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	2
% of Detects	100	0	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% of Non-Detects	0	100	0	0	0	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

										P	AH										Cyanides
	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b+i)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Zero)	PAHs (Sum of total)	Cyanide (WAD)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1
NEPM 2013 Table 1A(1) HILs Rec C Soil																	3	3	3	300	
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil																	40	40	40	4,000	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)														NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)	_													NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)														NL							<u> </u>
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)														NL							
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind														370							
NEPM Site-specific EILs - Commercial and Industrial																					
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space														170							
NEPM Site-specific EILs - Urban Res & Public Open Space																					
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil					1.4																
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil					0.7																
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers														29,000							
CRC Care HSL-C Recreational / Open Space														1,900							
CRC Care HSL-D Commercial / Industrial														11,000							
PFAS NEMP 2020 Ecological direct exposure																					
PFAS NEMP 2020 Ecological indirect exposure																					
PFAS NEMP 2020 Commercial/Industrial (HIL D)																					
NSW 2014 General Solid Waste CT1 (No Leaching)					0.8															200	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)					3.2															800	

Field ID	Date	Depth	Sample Type																					
LFG1 0.5	18 May 2023	0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
LFG1 1.0	18 May 2023	1	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<1
LFG1 1.5	18 May 2023	1.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	0.5	-
LFG2 0.5	18 May 2023	0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
LFG2 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.5	18 May 2023	1.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	0.7	0.6	1.2	<0.5	1.3	-
LFG2 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 0.5	18 May 2023	0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.0	<0.5	<0.5	<0.5	<0.5	0.8	0.6	1.2	<0.5	1.8	-
LFG3 1.5	18 May 2023	1.5	Normal	<0.5	<0.5	<0.5	1.5	1.5	1.7	0.9	0.8	1.4	<0.5	3.4	<0.5	0.7	<0.5	1.3	3.3	2.2	2.5	2.0	16.5	-
LFG3 3.4	18 May 2023	3.4	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<1
LFG3 4.0	18 May 2023	4	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	1.8	0.6	1.1	0.6	1.2	<0.5	5.2	-
QC1	18 May 2023	4	QA/QC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	3.3	<0.5	0.7	0.6	1.2	<0.5	4.8	-

						_				PA	AH										Cyanides
	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b+j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Zero)	PAHs (Sum of total)	Cyanide (WAD)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1
NEPM 2013 Table 1A(1) HILs Rec C Soil																	3	3	3	300	
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil																	40	40	40	4,000	
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)														NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)														NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)														NL							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)														NL							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)														NL							
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind														370							
NEPM Site-specific EILs - Commercial and Industrial																					
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space														170							
NEPM Site-specific EILs - Urban Res & Public Open Space																					
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil					1.4																
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil					0.7																
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers														29,000							
CRC Care HSL-C Recreational / Open Space														1,900							
CRC Care HSL-D Commercial / Industrial														11,000							
PFAS NEMP 2020 Ecological direct exposure																					
PFAS NEMP 2020 Ecological indirect exposure																					
PFAS NEMP 2020 Commercial/Industrial (HIL D)																					
NSW 2014 General Solid Waste CT1 (No Leaching)					0.8															200	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)					3.2															800	

Field ID	Date	Depth	Sample Type																					
LFG4 0.5	18 May 2023	0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	0.7	0.6	1.2	<0.5	1.5	-
LFG4 2.0	18 May 2023	2	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	0.6	0.6	1.2	<0.5	1.2	-
QC2	18 May 2023	2	QA/QC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
LFG4 5.0	18 May 2023	5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	1.1	0.6	0.9	0.6	1.2	<0.5	3.5	-
SB1 0.5	18 May 2023	0.5	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
SB1 1.0	18 May 2023	1	Normal	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-

Statistics																					
Number of Results	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	2
Number of Detects	0	0	0	1	1	2	1	1	1	0	9	0	1	3	3	8	16	16	1	9	0
Minimum Concentration	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	0.5	<1
Minimum Detect	ND	ND	ND	1.5	1.5	0.5	0.9	0.8	1.4	ND	0.5	ND	0.7	1.1	0.6	0.6	0.6	1.2	2	0.5	ND
Maximum Concentration	<0.5	<0.5	<0.5	1.5	1.5	1.7	0.9	0.8	1.4	<0.5	3.4	<0.5	0.7	3.3	1.3	3.3	2.2	2.5	2	16.5	<1
Maximum Detect	ND	ND	ND	1.5	1.5	1.7	0.9	0.8	1.4	ND	3.4	ND	0.7	3.3	1.3	3.3	2.2	2.5	2	16.5	ND
Average Concentration *	0.25	0.25	0.25	0.33	0.33	0.36	0.29	0.28	0.32	0.25	0.72	0.25	0.28	0.59	0.36	0.68	0.7	1.3	0.36	2.4	0.5
Median Concentration *	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.55	0.25	0.25	0.25	0.25	0.425	0.6	1.2	0.25	0.85	0.5
Standard Deviation *	0	0	0	0.31	0.31	0.36	0.16	0.14	0.29	0	0.78	0	0.11	0.84	0.28	0.76	0.4	0.32	0.44	4.1	0
95% UCL (Student's-t) *	0.25	0.25	0.25	0.465	0.465	0.516	0.362	0.345	0.448	0.25	1.064	0.25	0.327	0.959	0.481	1.007	0.875	1.424	0.551	4.179	0.5
% of Detects	0	0	0	6	6	12	6	6	6	0	56	0	6	19	19	50	100	100	6	56	0
% of Non-Detects	100	100	100	94	94	88	94	94	94	100	44	100	94	81	81	50	0	0	94	44	100

									Organo	ochlorine Pe	esticides									МАН	Organo-phosphorous Pesticides	Halog Benz	enated zenes
	4,4-DDE	a-BHC	Aldrin	b-BHC	Chlordane	Chlordane (cis)	Chlordane (trans)	d-BHC	000	DDT	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Styrene	Chlorpyrifos	Chlorobenzene	Hexachlorobenzene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.5	0.05	0.5	0.05
NEPM 2013 Table 1A(1) HILs Rec C Soil					70										20			10			250		10
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil					530										100			50			2,000		80
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)																							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)																							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)																							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)																							
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind										640													
NEPM Site-specific EILs - Commercial and Industrial																							
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space										180													
NEPM Site-specific EILs - Urban Res & Public Open Space																							
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																							
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																							
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers																							
CRC Care HSL-C Recreational / Open Space																							
CRC Care HSL-D Commercial / Industrial																							
PFAS NEMP 2020 Ecological direct exposure																							
PFAS NEMP 2020 Ecological indirect exposure																							
PFAS NEMP 2020 Commercial/Industrial (HIL D)																							
NSW 2014 General Solid Waste CT1 (No Leaching)																				60	4	2,000	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)																				240	16	8,000	

Field ID	Date	Depth	Sample Type																							
LFG1 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG1 1.0	18 May 2023	1	Normal	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.5	<0.05
LFG1 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 3.4	18 May 2023	3.4	Normal	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.5	<0.05
LFG3 4.0	18 May 2023	4	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QC1	18 May 2023	4	QA/QC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

									Organo	ochlorine Pe	sticides									МАН	Organo-phosphorous Pesticides	Halog Ben	jenated zenes
	4,4-DDE	a-BHC	Aldrin	p-BHC	Chlordane	Chlordane (cis)	Chlordane (trans)	d-BHC	000	DDT	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Styrene	Chlorpyrifos	Chloroben zene	Hexachlorobenzene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.5	0.05	0.5	0.05
NEPM 2013 Table 1A(1) HILs Rec C Soil					70										20			10			250		10
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil					530										100			50			2,000		80
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)																							4
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)																							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)																							
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)																							
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)																							
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind										640													
NEPM Site-specific EILs - Commercial and Industrial																							
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space										180													
NEPM Site-specific EILs - Urban Res & Public Open Space																							
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																							
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																							
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers																							
CRC Care HSL-C Recreational / Open Space																							
CRC Care HSL-D Commercial / Industrial																							
PFAS NEMP 2020 Ecological direct exposure																							
PFAS NEMP 2020 Ecological indirect exposure																							
PFAS NEMP 2020 Commercial/Industrial (HIL D)																							
NSW 2014 General Solid Waste CT1 (No Leaching)																				60	4	2,000	
NSW 2014 Restricted Solid Waste CT2 (No Leaching)																				240	16	8,000	
Field ID Date Depth Sample Type																							

LFG4 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG4 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QC2	18 May 2023	2	QA/QC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG4 5.0	18 May 2023	5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB1 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB1 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Statistics																							
Number of Results	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.5	<0.05
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Maximum Concentration	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.5	<0.05
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Average Concentration *	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.1	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.25	0.025	0.25	0.025
Median Concentration *	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.1	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.25	0.025	0.25	0.025
Standard Deviation *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95% UCL (Student's-t) *	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.1	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.25	0.025	0.25	0.025
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% of Non-Detects	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

					Perfluoroa	Ikane Carbo	oxylic Acids	;				(n:2)	Fluorotelon	ner Sulfonic	Acids		Per	fluoroalkan	e Sulfonic A	cids	
	Perfluorobutanoic acid (PFBA)	Perfluorohexanoic acid (PFHxA)	Perfluoropentanoic acid (PFPeA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorodecanoic acid (PFDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorononanoic acid (PFNA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnDA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecane sulfonic acid (PFDS)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0005	0.0002	0.0002	0.0005	0.0005	0.0005	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
NEPM 2013 Table 1A(1) HILs Rec C Soil																					
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil																					
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)																					
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)																					
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)																					
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)																					
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)																					
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)																					
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)																					
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)																					
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind																					
NEPM Site-specific EILs - Commercial and Industrial																					
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space																					
NEPM Site-specific EILs - Urban Res & Public Open Space																					
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil																					
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																					
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers																					
CRC Care HSL-C Recreational / Open Space																					
CRC Care HSL-D Commercial / Industrial																					
PFAS NEMP 2020 Ecological direct exposure					10															1	
PFAS NEMP 2020 Ecological indirect exposure																				0.01	
PFAS NEMP 2020 Commercial/Industrial (HIL D)					50													20		20	
NSW 2014 General Solid Waste CT1 (No Leaching)																					
NSW 2014 Restricted Solid Waste CT2 (No Leaching)																					

				_																				
LFG1 0.5	18 May 2023	0.5	Normal	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG1 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG1 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 3.4	18 May 2023	3.4	Normal	<0.001	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0002	< 0.0002	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002
LFG3 4.0	18 May 2023	4	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QC1	18 May 2023	4	QA/QC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

								Perfluoroa	Ikane Carbo	oxylic Acids	5				(n:2)	Fluorotelon	ner Sulfonic	Acids		Per	fluoroalkan	e Sulfonic A	cids	
				Perfluorobutanoic acid (PFBA)	Perfluorohexanoic acid (PFHxA)	Perfluoropentanoic acid (PFPeA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorodecanoic acid (PFDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorononanoic acid (PFNA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnDA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecane sulfonic acid (PFDS)
				mg/кg	mg/кg	<u>mg/кg</u>	<u>mg/кg</u>	mg/kg	<u>mg/кg</u>	mg/kg	<u>mg/кg</u>	mg/кg	<u>mg/кg</u>	mg/кg	mg/кg	<u>mg/кg</u>	mg/kg	mg/кg	mg/кg	<u>mg/кg</u>	<u>mg/кg</u>	<u>mg/кg</u>	mg/kg	<u>mg/кg</u>
NEPM 2013 Table 1				0.001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0005	0.0002	0.0002	0.0005	0.0005	0.0005	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
NEPM 2013 Table 1	A(1) HILS Rec C Soli	Soil																					'	
NEPM 2013 Table 1	A(1) THE's Comm/Ind D Soil F	ISI for Vanour Intrusio	on Sand (0-1m)																					
NEPM 2013 Table 1	A(3) Comm/Ind D Soil F	ISL for Vapour Intrusic	on, Sand (1-2m)																					
NEPM 2013 Table 1	A(3) Comm/Ind D Soil F	ISL for Vapour Intrusic	on, Sand (2-4m)																					
NEPM 2013 Table 1	A(3) Comm/Ind D Soil F	ISI for Vapour Intrusio	on Sand (>=4m)																					
NEPM 2013 Table 1	A(3) Rec C Soil HSL for	Vapour Intrusion, Sar	nd (0 - 1m)																					-
NEPM 2013 Table 1	A(3) Rec C Soil HSL for	Vapour Intrusion, Sar	nd (1-2m)																					<u> </u>
NEPM 2013 Table 1	A(3) Rec C Soil HSL for	Vapour Intrusion. Sar	nd (2-4m)																					
NEPM 2013 Table 1	A(3) Rec C Soil HSL for	Vapour Intrusion. Sar	nd (>=4m)																					
NEPM 2013 Table 1	B(5) Generic EIL - Com	m/Ind																						
NEPM Site-specific	EILs - Commercial and I	ndustrial																						
NEPM 2013 Table 1	B(5) Generic EIL - Urba	n Res & Public Open \$	Space																					
NEPM Site-specific	EILs - Urban Res & Pub	lic Open Space	•																					
NEPM 2013 Table 1	B(6) ESLs for Comm/In	d, Coarse Soil																						
NEPM 2013 Table 1	B(6) ESLs for Urban Re	s, Coarse Soil																						
CRC Care HSL - Di	rect Contact: Intrusive M	aintenance Workers																						
CRC Care HSL-C R	ecreational / Open Space	e																						
CRC Care HSL-D C	ommercial / Industrial																							
PFAS NEMP 2020	Ecological direct exposu	re						10															1	
PFAS NEMP 2020	Ecological indirect expos	ure																					0.01	
PFAS NEMP 2020	Commercial/Industrial (H	IL D)						50													20		20	
NSW 2014 General	Solid Waste CT1 (No Lo	eaching)																						
NSW 2014 Restricte	ed Solid Waste CT2 (No	Leaching)																						
L																								
Field ID	Date	Depth	Sample Type																					
LFG4 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
l		1-	I		1	1	1	1	1	1	1	1	1	1	11	1	1	1	11	1	1	1	1	1

Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QA/QC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Normal	< 0.001	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	<0.0002	< 0.0002	<0.0005	< 0.0005	< 0.0005	<0.0005	<0.0002	<0.0002	< 0.0002	<0.0002	0.0008	< 0.0002
Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Normal Normal QA/QC Normal Normal Normal Normal Normal	Normal - Normal - QA/QC - Normal <0.001 Normal - Normal -	Normal - Normal - QA/QC - Normal <0.001 Normal - Normal - Normal -	Normal - - - Normal - - - QA/QC - - - Normal <0.001 <0.0002 <0.0002 Normal - - - Normal - - - Normal - - -	Normal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th>Normal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<th>Normal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<></th></th<></th></th<></th></th<></th></th<></th></th></th>	Normal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th>Normal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<></th></th<></th></th<></th></th<></th></th<></th></th>	Normal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<></th></th<></th></th<></th></th<></th></th<></th>	Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<></th></th<></th></th<></th></th<></th></th<>	Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<></th></th<></th></th<></th></th<>	Normal <th< th=""><th>Normal <th< th=""><th>Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<></th></th<></th></th<>	Normal <th< th=""><th>Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<></th></th<>	Normal <th< th=""><th>Normal <</th><th>Normal <</th><th>Normal</th><th>Normal<th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<></th></th<>	Normal <	Normal <	Normal	Normal <th< th=""><th>Normal<th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<></th></th<>	Normal <th< th=""><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0</th><th>Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</th></th<>	Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	Normal9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	Normal0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.QAQC0.0.0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0	Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.Normal0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.

Statistics																					
Number of Results	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Minimum Concentration	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0008	ND
Maximum Concentration	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	0.0008	<0.0002
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0008	ND
Average Concentration *	0.0005	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00025	0.0001	0.0001	0.00025	0.00025	0.00025	0.00025	0.0001	0.0001	0.0001	0.0001	0.00045	0.0001
Median Concentration *	0.0005	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00025	0.0001	0.0001	0.00025	0.00025	0.00025	0.00025	0.0001	0.0001	0.0001	0.0001	0.00045	0.0001
Standard Deviation *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00049	0
95% UCL (Student's-t) *	0.0005	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00025	0.0001	0.0001	0.00025	0.00025	0.00025	0.00025	0.0001	0.0001	0.0001	0.0001	0.00266	0.0001
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0
% of Non-Detects	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	50	100

			Perfluor	oalkyl Sulfo	namides				PFAS		PCBs	Biota	Mass	Solvents
	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane sulfonamide (MeFOSA)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	N-methyl perfluorooctane suffonamidoethanol (MeFOSE)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	Sum of PFHxS and PFOS	Sum of PFAS	Sum of PFAS (WA DER List)	PCBs (Sum of total)	Biota Description	weight of sample	Methyl Ethyl Ketone
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	g	mg/kg
EQL	0.0002	0.0005	0.0002	0.0005	0.0005	0.0002	0.0005	0.0002	0.0002	0.0002	0.1		0.01	5
NEPM 2013 Table 1A(1) HILs Rec C Soil											1			
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil											7			
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)														
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)														
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)														
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)														
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)														
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)														
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)														
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)														
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind														
NEPM Site-specific EILs - Commercial and Industrial														
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space														
NEPM Site-specific EILs - Urban Res & Public Open Space														
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil														
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil														
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers														
CRC Care HSL-C Recreational / Open Space														
CRC Care HSL-D Commercial / Industrial														
PFAS NEMP 2020 Ecological direct exposure														
PFAS NEMP 2020 Ecological indirect exposure														
PFAS NEMP 2020 Commercial/Industrial (HIL D)								20						
NSW 2014 General Solid Waste CT1 (No Leaching)											50			4,000
NSW 2014 Restricted Solid Waste CT2 (No Leaching)											50			16,000

Field ID	Date	Depth	Sample Type														
LFG1 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	1	43.9	-
LFG1 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	<5
LFG1 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	1	54.1	-
LFG2 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG2 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	1	50.9	-
LFG2 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	1	55.2	-
LFG2 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	1	42.0	-
LFG3 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LFG3 1.5	18 May 2023	1.5	Normal	-	-	-	-	-	-	-	-	-	-	-	1	55.3	-
LFG3 3.4	18 May 2023	3.4	Normal	< 0.0002	<0.0005	< 0.0002	<0.0005	<0.0005	< 0.0002	<0.0005	<0.0002	<0.0002	< 0.0002	<0.1	1	45.9	<5
LFG3 4.0	18 May 2023	4	Normal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
QC1	18 May 2023	4	QA/QC	-	-	-	-	-	-	-	-	-	-	-	-	-	-

			Perfluor	oalkyl Sulfo	onamides				PFAS		PCBs	Biota	N
	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane suffonamide (MeFOSA)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	N-methyl perfluorooctane sulfonamidoethanol (MeFOSE)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EfFOSAA)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	Sum of PFHxS and PFOS	Sum of PFAS	Sum of PFAS (WA DER List)	PCBs (Sum of total)	Biota Description	
i	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	<u> </u>	
EQL	0.0002	0.0005	0.0002	0.0005	0.0005	0.0002	0.0005	0.0002	0.0002	0.0002	0.1		
NEPM 2013 Table 1A(1) HILs Rec C Soil											1		
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil											7		
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0-1m)													
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (1-2m)													
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (2-4m)													
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (>=4m)													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (0 - 1m)													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (1-2m)													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (2-4m)													
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand (>=4m)													
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind													
NEPM Site-specific EILs - Commercial and Industrial													
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space													
NEPM Site-specific EILs - Urban Res & Public Open Space													
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil													
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil													
CRC Care HSL - Direct Contact: Intrusive Maintenance Workers													
CRC Care HSL-C Recreational / Open Space													
CRC Care HSL-D Commercial / Industrial													
PFAS NEMP 2020 Ecological direct exposure													
PFAS NEMP 2020 Ecological indirect exposure													
PFAS NEMP 2020 Commercial/Industrial (HIL D)								20					
NSW 2014 General Solid Waste CT1 (No Leaching)											50		
NSW 2014 Restricted Solid Waste CT2 (No Leaching)											50		

Field ID	Date	Depth	Sample Type												
LFG4 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	-
LFG4 2.0	18 May 2023	2	Normal	-	-	-	-	-	-	-	-	-	-	-	1
QC2	18 May 2023	2	QA/QC	-	-	-	-	-	-	-	-	-	-	-	-
LFG4 5.0	18 May 2023	5	Normal	<0.0002	<0.0005	<0.0002	<0.0005	<0.0005	0.0042	<0.0005	0.0008	0.0050	0.0008	-	1
SB1 0.5	18 May 2023	0.5	Normal	-	-	-	-	-	-	-	-	-	-	-	1
SB1 1.0	18 May 2023	1	Normal	-	-	-	-	-	-	-	-	-	-	-	1

Statistics														
Number of Results	2	2	2	2	2	2	2	2	2	2	2	11	11	2
Number of Detects	0	0	0	0	0	1	0	1	1	1	0	11	11	0
Minimum Concentration	<0.0002	<0.0005	<0.0002	<0.0005	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.1	1	42	<5
Minimum Detect	ND	ND	ND	ND	ND	0.0042	ND	0.0008	0.005	0.0008	ND	1	42	ND
Maximum Concentration	<0.0002	<0.0005	<0.0002	<0.0005	<0.0005	0.0042	<0.0005	0.0008	0.005	0.0008	<0.1	1	378	<5
Maximum Detect	ND	ND	ND	ND	ND	0.0042	ND	0.0008	0.005	0.0008	ND	1	378	ND
Average Concentration *	0.0001	0.00025	0.0001	0.00025	0.00025	0.0022	0.00025	0.00045	0.0026	0.00045	0.05	1	96	2.5
Median Concentration *	0.0001	0.00025	0.0001	0.00025	0.00025	0.00215	0.00025	0.00045	0.00255	0.00045	0.05	1	54.1	2.5
Standard Deviation *	0	0	0	0	0	0.0029	0	0.00049	0.0035	0.00049	0	0	107	0
95% UCL (Student's-t) *	0.0001	0.00025	0.0001	0.00025	0.00025	0.0151	0.00025	0.00266	0.018	0.00266	0.05	1	154.4	2.5
% of Detects	0	0	0	0	0	50	0	50	50	50	0	100	100	0
% of Non-Detects	100	100	100	100	100	50	100	50	50	50	100	0	0	100

Mass	Solvents
weight of sample	Methyl Ethyl Ketone
g	mg/kg
0.01	5
	4 000
	16,000
	10,000

-	-
378	-
-	-
223	-
61.2	-
45.1	-

			BT	EX				Organic						Chlorin	nated Hydrod	arbons				
	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Ethane	Ethene	Methane	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethane	1,1-dichloroethene	1,2-dichloroethane	1,2-dichloropropane	Benzyl chloride	Bromodichlorometha ne	Bromoform
	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3
EQL	100	190	220	430	220	650	60,000	55,000	33,000	340	270	340	270	200	200	200	230	260	340	520
NEPM 2013 Table 1A(2) Comm/Ind D Soil Vap VOCC HILs											230,000									
CRC Care 2011 Table B1 Intrusive Workers (Shallow Trench) 0 to <2m - SAND	760,000	NL	NL		NL															
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m	4,000	4,800,000	1,300,000			840,000														
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=1m, <2m	10,000	16,000,000	4,600,000			3,200,000														
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=2m, <4m	30,000	39,000,000	11,000,000			8,000,000														
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=4m, <8m	65,000	84,000,000	25,000,000			18,000,000														

Location Code	Field ID	Date	Sample Type																				
LFG01	LFG01_220623	22 Jun 2023	Normal	<100	<190	<220	<430	<220	<650	<120,000	<110,000	3,820,000	<340	<270	<340	<270	<200	<200	<200	<230	<260	<340	<520
LFG02	LFG02_220623	22 Jun 2023	Normal	<100	<190	<220	<430	<220	<650	<120,000	<110,000	2,330,000	<340	<270	<340	<270	<200	<200	<200	<230	<260	<340	<520
LFG03	LFG03_220623	22 Jun 2023	Normal	1,180	<190	282	<430	<220	<650	<120,000	<110,000	426,000,000	<340	<270	<340	<270	<200	<200	<200	<230	<260	<340	<520
LFG03	QC01_220623	22 Jun 2023	Field_D	1,190	<190	281	<430	<220	<650	<120,000	<110,000	428,000,000	<340	<270	<340	<270	<200	<200	<200	<230	<260	<340	<520
LFG04	LFG04_220623	22 Jun 2023	Normal	418	<190	<220	<430	<220	<650	<120,000	<110,000	305,000,000	<340	<270	<340	<270	<200	<200	<200	<230	<260	<340	<520

Statistics																				
Number of Results	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Number of Detects	3	0	2	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<100	<190	<220	<430	<220	<650	<120,000	<110,000	2,330,000	<340	<270	<340	<270	<200	<200	<200	<230	<260	<340	<520
Minimum Detect	418	ND	281	ND	ND	ND	ND	ND	2,330,000	ND										
Maximum Concentration	1,190	<190	282	<430	<220	<650	<120,000	<110,000	428,000,000	<340	<270	<340	<270	<200	<200	<200	<230	<260	<340	<520
Maximum Detect	1,190	ND	282	ND	ND	ND	ND	ND	428,000,000	ND										
Average Concentration *	578	95	179	215	110	325	60,000	55,000	233,030,000	170	135	170	135	100	100	100	115	130	170	260
Median Concentration *	418	95	110	215	110	325	60,000	55,000	305,000,000	170	135	170	135	100	100	100	115	130	170	260
Standard Deviation *	574	0	94	0	0	0	0	0	215,748,764	0	0	0	0	0	0	0	0	0	0	0
95% UCL (Student's-t) *	1,125	95	268.2	215	110	325	60,000	55,000	438,700,000	170	135	170	135	100	100	100	115	130	170	260
% of Detects	60	0	40	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0
% of Non-Detects	40	100	60	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	100	100

		-	_	-	_		Chlorinated I	lydrocarbon	5	-					Acrylates
	Carbon tetrachloride	Chlorodibromometha ne	Chloroethane	Chloroform	Chloromethane	cis-1,2-dichloroethene	cis-1,3- dichloropropene	Dichloromethane	Hexachlorobutadiene	Tetrachloroethene	trans-1,2- dichloroethene	Trichloroethene	trans-1,3- dichloropropene	Vinyl chloride	Methyl Methacrylate
	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3
EQL	310	430	130	240	100	20	230	170	530	340	200	5.4	230	5.1	210
NEPM 2013 Table 1A(2) Comm/Ind D Soil Vap VOCC HILs						300				8,000		80		100	
CRC Care 2011 Table B1 Intrusive Workers (Shallow Trench) 0 to <2m - SAND															
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m															
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=1m, <2m															
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=2m, <4m															
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=4m, <8m															

Location Code	Field ID	Date	Sample Type	_														
LFG01	LFG01_220623	22 Jun 2023	Normal	<310	<430	<130	<240	<100	<20.0	<230	<170	<530	<340	<200	<5.4	<230	<5.1	<210
LFG02	LFG02_220623	22 Jun 2023	Normal	<310	<430	<130	<240	<100	<20.0	<230	<170	<530	<340	<200	<5.4	<230	<5.1	<210
LFG03	LFG03_220623	22 Jun 2023	Normal	<310	<430	<130	<240	<100	<100	<230	<170	<530	<340	<200	<135	<230	<63.8	<210
LFG03	QC01_220623	22 Jun 2023	Field_D	<310	<430	<130	<240	<100	<100	<230	<170	<530	<340	<200	<135	<230	<63.8	<210
LFG04	LFG04_220623	22 Jun 2023	Normal	<310	<430	<130	<240	<100	<20.0	<230	<170	<530	<340	<200	<27.0	<230	23.8	<210

Statistics															
Number of Results	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Minimum Concentration	<310	<430	<130	<240	<100	<20	<230	<170	<530	<340	<200	<5.4	<230	<5.1	<210
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23.8	ND
Maximum Concentration	<310	<430	<130	<240	<100	<100	<230	<170	<530	<340	<200	<135	<230	<63.8	<210
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23.8	ND
Average Concentration *	155	215	65	120	50	26	115	85	265	170	100	31	115	19	105
Median Concentration *	155	215	65	120	50	10	115	85	265	170	100	13.5	115	23.8	105
Standard Deviation *	0	0	0	0	0	22	0	0	0	0	0	34	0	15	0
95% UCL (Student's-t) *	155	215	65	120	50	46.89	115	85	265	170	100	63.01	115	32.81	105
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0
% of Non-Detects	100	100	100	100	100	100	100	100	100	100	100	100	100	80	100

				NA				Sample P	reparation					MAH				
	2,2,4- Trimethy Ipentane	Ethyl tert-Butyl Ether (ETBE)	Freon 114	tert-Butyl alcohol	Butane	Propane	Propene	lnert Gases (N2. Ar) by difference	lnert Gases (N2. Ar) by difference	1,2,4- trimethylbenzene	1,3,5- trimethylbenzene	1-methyl-4 ethyl benzene	lsopropylbenzene	n-butylbenzene	n-propylbenzene	sec-butylbenzene	Styrene	tert-buty lbenzene
P	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	Mol %	mg/m ³	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3
EQL	230	210	350	150	120,000	90,000	90	0.1		240	240	240	250	270	250	270	210	270
NEPM 2013 Table 1A(2) Comm/Ind D Soil Vap VOCC HILs																		
CRC Care 2011 Table B1 Intrusive Workers (Shallow Trench) 0 to <2m - SAND																		
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m																		
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=1m, <2m																		
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=2m, <4m																		
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=4m, <8m																		

Location Code	Field ID	Date	Sample Type	_																	
LFG01	LFG01_220623	22 Jun 2023	Normal	<230	<210	<350	<150	<240,000	<180,000	<90.0	77.4	885,000	<240	<240	<240	<250	<270	<250	<270	<210	<270
LFG02	LFG02_220623	22 Jun 2023	Normal	<230	<210	<350	<150	<240,000	<180,000	<90.0	78.1	894,000	<240	<240	<240	<250	<270	<250	<270	<210	<270
LFG03	LFG03_220623	22 Jun 2023	Normal	13,400	<210	908	<150	<240,000	<180,000	<90.0	21.0	241,000	<240	<240	<240	1,270	<270	485	<270	<210	<270
LFG03	QC01_220623	22 Jun 2023	Field_D	13,500	<210	936	<150	<240,000	<180,000	<90.0	20.9	239,000	<240	<240	<240	1,260	<270	468	<270	<210	<270
LFG04	LFG04_220623	22 Jun 2023	Normal	2,640	<210	618	<150	<240,000	<180,000	<90.0	42.2	483,000	<240	<240	<240	953	<270	629	460	<210	<270

Statistics																		
Number of Results	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Number of Detects	3	0	3	0	0	0	0	5	5	0	0	0	3	0	3	1	0	0
Minimum Concentration	<230	<210	<350	<150	<240,000	<180,000	<90	20.9	239,000	<240	<240	<240	<250	<270	<250	<270	<210	<270
Minimum Detect	2,640	ND	618	ND	ND	ND	ND	20.9	239,000	ND	ND	ND	953	ND	468	460	ND	ND
Maximum Concentration	13,500	<210	936	<150	<240,000	<180,000	<90	78.1	894,000	<240	<240	<240	1,270	<270	629	460	<210	<270
Maximum Detect	13,500	ND	936	ND	ND	ND	ND	78.1	894,000	ND	ND	ND	1,270	ND	629	460	ND	ND
Average Concentration *	5,954	105	562	75	120,000	90,000	45	48	548,400	120	120	120	747	135	366	200	105	135
Median Concentration *	2,640	105	618	75	120,000	90,000	45	42.2	483,000	120	120	120	953	135	468	135	105	135
Standard Deviation *	6,920	0	375	0	0	0	0	29	326,818	0	0	0	582	0	229	145	0	0
95% UCL (Student's-t) *	12,552	105	919.8	75	120,000	90,000	45	75.17	859,985	120	120	120	1,301	135	584.8	338.6	105	135
% of Detects	60	0	60	0	0	0	0	100	100	0	0	0	60	0	60	20	0	0
% of Non-Detects	40	100	40	100	100	100	100	0	0	100	100	100	40	100	40	80	100	100

			Halogenate	ed Benzenes				Haloge	nated Hydrod	carbons				VO)Cs		
	1,2,4-trich lor oben zene	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	2-chlorotoluene	Chlorobenzene	1,2-dibromoethane	Bromomethane	Dichlorodifluorometh ane	Trichlorofluorometha ne	Trichlorofluorometha ne	2-isopropyltoluene	2-Chloro-1,3- butadiene	Acrolein	Diisopropyl ether	Vinyl bromide (bromoethene)	Freon 113
	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	ppmv	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3
EQL	370	300	300	300	260	230	380	190	250		280	270	180	110	210	220	380
NEPM 2013 Table 1A(2) Comm/Ind D Soil Vap VOCC HILs																	
CRC Care 2011 Table B1 Intrusive Workers (Shallow Trench) 0 to <2m - SAND																	
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m																	
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=1m, <2m																	
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=2m, <4m																	
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=4m, <8m																	

Location Code	Field ID	Date	Sample Type																	
LFG01	LFG01_220623	22 Jun 2023	Normal	<370	<300	<300	<300	<260	<230	<380	<190	<250	< 0.0500	<280	<270	<180	<110	<210	<220	<380
LFG02	LFG02_220623	22 Jun 2023	Normal	<370	<300	<300	<300	<260	<230	<380	<190	<250	<0.0500	<280	<270	<180	<110	<210	<220	<380
LFG03	LFG03_220623	22 Jun 2023	Normal	<370	<300	<300	<300	<260	<230	<380	<190	<250	<0.0500	<280	<270	<180	<110	<210	<220	<380
LFG03	QC01_220623	22 Jun 2023	Field_D	<370	<300	<300	<300	<260	<230	<380	<190	<250	<0.0500	<280	<270	<180	<110	<210	<220	<380
LFG04	LFG04_220623	22 Jun 2023	Normal	<370	<300	<300	<300	<260	<230	<380	<190	<250	< 0.0500	<280	<270	<180	<110	<210	<220	<380

Statistics																	
Number of Results	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<370	<300	<300	<300	<260	<230	<380	<190	<250	<0.05	<280	<270	<180	<110	<210	<220	<380
Minimum Detect	ND	ND	ND	ND	ND	ND	ND	ND									
Maximum Concentration	<370	<300	<300	<300	<260	<230	<380	<190	<250	<0.05	<280	<270	<180	<110	<210	<220	<380
Maximum Detect	ND	ND	ND	ND	ND	ND	ND	ND									
Average Concentration *	185	150	150	150	130	115	190	95	125	0.025	140	135	90	55	105	110	190
Median Concentration *	185	150	150	150	130	115	190	95	125	0.025	140	135	90	55	105	110	190
Standard Deviation *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95% UCL (Student's-t) *	185	150	150	150	130	115	190	95	125	0.025	140	135	90	55	105	110	190
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% of Non-Detects	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

	PAH					Ot	ther					Solvents								
	Naphthalene		Helium		Carbon Dioxide		Carbon Monoxide		Hydrogen	Oxygen	Oxygen	tert-Amyl Methyl Ether (TAME)	1,3-Butadiene	1,4-Dioxane	Methyl Ethyl Ketone	2-hexanone (MBK)	4-Methyl-2-pentanone	Acetone	Acetonitrile	Acrylonitrile
r	µg/m3	Mol %	mg/m ³	Mol %	mg/m ³	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3						
EQL	100											210	110	180	150	200	200	120	80	110
NEPM 2013 Table 1A(2) Comm/Ind D Soil Vap VOCC HILs																				
CRC Care 2011 Table B1 Intrusive Workers (Shallow Trench) 0 to <2m - SAND	880,000																			
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=0m, <1m	3,000																			
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=1m, <2m	15,000																			
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=2m, <4m	35,000																			
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapour HSL for Vapour Intrusion, Sand >=4m, <8m	75,000																			

Location Code	Field ID	Date	Sample Type																				
LFG01	LFG01_220623	22 Jun 2023	Normal	<100	<0.010	<16	4.25	76,500	< 0.010	<120	<0.010	<8	17.8	234,000	<210	<110	<180	<150	<200	<200	<120	<80.0	<110
LFG02	LFG02_220623	22 Jun 2023	Normal	<100	<0.010	<16	3.33	59,900	<0.010	<120	<0.010	<8	18.2	238,000	<210	<110	<180	<150	<200	<200	<120	<80.0	<110
LFG03	LFG03_220623	22 Jun 2023	Normal	<100	<0.010	<16	12.2	219,000	<0.010	<120	<0.010	<8	1.55	20,300	<210	<110	<180	<150	<200	<200	<120	<80.0	<110
LFG03	QC01_220623	22 Jun 2023	Field_D	<100	<0.010	<16	12.2	220,000	<0.010	<120	<0.010	<8	1.50	19,600	<210	<110	<180	<150	<200	<200	<120	<80.0	<110
LFG04	LFG04_220623	22 Jun 2023	Normal	<100	<0.010	<16	10.1	182,000	<0.010	<120	<0.010	<8	1.11	14,600	<210	<110	<180	<150	<200	<200	<120	<80.0	<110

Statistics																				
Number of Results	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Number of Detects	0	0	0	5	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0
Minimum Concentration	<100	<0.01	<16	3.33	59,900	<0.01	<120	<0.01	<8	1.11	14,600	<210	<110	<180	<150	<200	<200	<120	<80	<110
Minimum Detect	ND	ND	ND	3.33	59,900	ND	ND	ND	ND	1.11	14,600	ND	ND	ND						
Maximum Concentration	<100	<0.01	<16	12.2	220,000	<0.01	<120	<0.01	<8	18.2	238,000	<210	<110	<180	<150	<200	<200	<120	<80	<110
Maximum Detect	ND	ND	ND	12.2	220,000	ND	ND	ND	ND	18.2	238,000	ND	ND	ND						
Average Concentration *	50	0.005	8	8.4	151,480	0.005	60	0.005	4	8	105,300	105	55	90	75	100	100	60	40	55
Median Concentration *	50	0.005	8	10.1	182,000	0.005	60	0.005	4	1.55	20,300	105	55	90	75	100	100	60	40	55
Standard Deviation *	0	0	0	4.3	77,773	0	0	0	0	9.1	119,341	0	0	0	0	0	0	0	0	0
95% UCL (Student's-t) *	50	0.005	8	12.54	225,628	0.005	60	0.005	4	16.71	219,078	105	55	90	75	100	100	60	40	55
% of Detects	0	0	0	100	100	0	0	0	0	100	100	0	0	0	0	0	0	0	0	0
% of Non-Detects	100	100	100	0	0	100	100	100	100	0	0	100	100	100	100	100	100	100	100	100

									Solvents					
				Allyl chloride	Carbon disulfide	Cyclohexane	Ethanol	Ethyl acetate	Heptane	Hexane	MTBE	2-Propanol	Tetrahydrofuran	Vinyl acetate
				μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	µg/m3	μg/m3	µg/m3	μg/m3
NEPM 2013 Table 1A(2) Comm/Ind D Soil Van \	/OCC HILS		100	100	170	90	160	200	160	160	120	150	160
CRC Care 2011 Table F	31 Intrusive Workers (Sh	allow Trench) 0 to <2m - S	AND											
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapo	ur HSI, for Vapour Intrusio	n Sand >=0m <1m											
NEPM 2013 Table 1A(5	i) Comm/Ind D Soil Vapo	ur HSL for Vapour Intrusio	n, Sand >=1m, <2m											
NEPM 2013 Table 1A(5) Comm/Ind D Soil Vapo	ur HSL for Vapour Intrusio	n, Sand >=2m, <4m											
NEPM 2013 Table 1A(5	i) Comm/Ind D Soil Vapo	ur HSL for Vapour Intrusio	n, Sand >=4m, <8m											
Location Code	Field ID	Date	Sample Type	4	•	8	1	•	8		1	•	•	1
LFG01	LFG01_220623	22 Jun 2023	Normal	<160	<160	<170	<90.0	<180	<200	<180	<180	715	<150	<180
LFG02	LFG02_220623	22 Jun 2023	Normal	<160	<160	<170	<90.0	<180	<200	<180	<180	147	<150	<180
LFG03	LFG03_220623	22 Jun 2023	Normal	<160	<160	4,540	<90.0	<180	1,280	43,000	<180	432	<150	<180
LFG03	QC01_220623	22 Jun 2023	Field_D	<160	<160	4,610	<90.0	<180	1,290	43,300	<180	280	<150	<180
LFG04	LFG04_220623	22 Jun 2023	Normal	<160	<160	791	<90.0	<180	257	1,120	<180	260	<150	<180
Statistics				1 -			-			-	-	-	-	-
Number of Results				5	5	5	5	5	5	5	5	5	5	5
Number of Detects				0	0	3	0	0	3	3	0	5	0	0
Minimum Concentratio	on			<160	<160	<1/0	<90	<180	<200	<180	<180	14/	<150	<180
Minimum Detect				ND	ND	/91	ND	ND	25/	1,120	ND (100	14/	ND (450	ND (400
Maximum Concentrati	on			<160	<160	4,610	<90	<180	1,290	43,300	<180	715	<150 ND	<180
Maximum Detect	*				ND	4,610	ND 45		1,290	43,300	ND 00	/15	ND 75	
Average Concentration	.*			00	00	701	45	90	257	1 1 2 0	90	290	75	90
Standard Deviation *				0	00	2 2 4 9	45	30	624	22 404	30	200	15	
95% LICL (Student's t)	*			80	80	4 261	45	90	1 200	39,830	90	576.1	75	90
% of Detects				0	0	60	0	0	60	60	0	100	0	0
% of Non-Detects				100	100	40	100	100	40	40	100	0	100	100
* A Non Detect Multiplie	r of 0 5 has been applied	1			1 100	J TV	100	1 100	V	1	100	i v	100	100

	Unit	EQL						
					1	[1
			-10			-10	-00	
	mg/kg	10	<10	<10	0	<10	<20	0
C10-C14 Fraction	mg/kg	20	<50	<50	0	<50	<20	0
C15-C28 Fraction	mg/kg	50	520	110	130	<100	<50	0
C29-C36 Fraction	mg/kg	50	300	<100	100	<100	53	0
C10-C36 Fraction (Sum)	mg/kg	50	820	110	153	<50	53	6
TRH								
C6-C10 Fraction	mg/kg	10	14	<10	33	<10	<20	0
C6-C10 minus BTEX (F1)	mg/kg	10	14	<10	33	<10	<20	0
>C10-C16 Fraction	mg/kg	50	50	<50	0	<50	<50	0
>C10-C16 Fraction minus Naphthalene (F2)	mg/kg	50	<50	<50	0	<50	<50	0
>C16-C34 Fraction (F3)	mg/kg	100	730	140	136	<100	<100	0
>C34-C40 Fraction (F4)	mg/kg	100	170	<100	52	<100	<100	0
>C10-C40 Fraction (Sum)	mg/kg	50	950	140	149	<50	<100	0
втех								
Benzene	mg/kg	0.1	<0.2	<0.2	0	<0.2	<0.1	0
Toluene	mg/kg	0.1	<0.5	<0.5	0	<0.5	<0.1	0
Ethylbenzene	mg/kg	0.1	<0.5	<0.5	0	<0.5	<0.1	0
Xylene (m & p)	mg/kg	0.2	<0.5	<0.5	0	<0.5	<0.2	0
Xylene (o)	mg/ka	0.1	<0.5	<0.5	0	<0.5	<0.1	0
Xvlene Total	ma/ka	0.3	<0.5	< 0.5	0	<0.5	< 0.3	0
Total BTEX	mg/kg	0.2	<0.2	<0.2	0	<0.2	-	-
Naphthalene (VOC)	mg/kg	0.5	2	2	0	<1	<0.5	0
								-
Arconic	ma/ka	2	10	8	22	6	7 1	17
Cadmium	mg/kg	0.4	<1	<1	0	<1	<0.4	0
	mg/kg	0.4	28	10	42	12	16	21
	mg/kg	Z	20	18	43	13	10	70
Copper	mg/kg	5	40	41	2	14	29	70
	mg/kg	5	473	232	00	20	41	45
	mg/kg	0.1	0.1	0.1	0	<0.1	0.2	67
	mg/kg	2	22	9	84	7	14	67
	mg/kg	5	337	141	82	60	87	37
				10.0				
Moisture Content	%	1	18.9	18.6	2	14.4	-	-
Acenaphthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benz(a)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benzo(a) pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benzo(b+j)fluoranthene	mg/kg	0.5	0.5	<0.5	0	<0.5	<0.5	0
Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Chrysene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Fluoranthene	mg/kg	0.5	1.2	0.8	40	0.6	<0.5	18
Fluorene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Naphthalene	mg/kg	0.5	1.8	3.3	59	<0.5	<0.5	0
Phenanthrene	mg/kg	0.5	0.6	<0.5	18	<0.5	<0.5	0
Pyrene	mg/kg	0.5	1.1	0.7	44	0.6	<0.5	18
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	0.6	0.6	0	0.6	0.6	0
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	0	1.2	1.2	0
Benzo(a)pyrene TEQ calc (Zero)	mg/ka	0.5	<0.5	<0.5	0	<0.5	<0.5	0
		0.5	5.0	1.0	-	1.0	-0.5	00

Field ID

Matrix Type

Lab Report Number

Date

LFG3 4.0

18 May 2023

Soil

ES2316686

QC1

18 May 2023

Soil

ES2316686

RPD

LFG4 2.0

18 May 2023

Soil

ES2316686

QC2

18 May 2023

Soil

992509

Table 3QAQC Results - Soil RPDsGWS Giants CoE1 Olympic Boulevard, Olympic Park NSW2207292

RPD

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

		Field ID Date	LFG03_220623 22 Jun 2023	QC01_220623 22 Jun 2023	
		Matrix Type Lab Report Number	Air EN2306447	Air EN2306447	RPD
	Unit	EQL		•	
BTEX					
Benzene	µg/m3	100	1,180	1,190	1
I oluene Ethylbenzene	μg/m3 μg/m3	190 220	<190 282	<190 281	0
Xylene (m & p)	µg/m3	430	<430	<430	0
Xylene (o) Xylene Total	µg/m3 µg/m3	220 650	<220 <650	<220 <650	0
Organic	μιμη		<000	(000	
Ethane	µg/m3	60,000	<120,000	<120,000	0
Methane	μg/m3	33,000	426,000,000	428,000,000	0
Chlorinated Hydrocarbons					
1,1,1,2-tetrachloroethane	µg/m3	340 270	<340	<340	0
1,1,2,2-tetrachloroethane	µg/m3	340	<340	<340	0
1,1,2-trichloroethane	µg/m3	270	<270	<270	0
1,1-dichloroethene	μg/m3	200	<200	<200	0
1,2-dichloroethane	µg/m3	200	<200	<200	0
I,2-dichloropropane Benzvl chloride	µg/m3 µa/m3	230	<230	<230	0
Bromodichloromethane	µg/m3	340	<340	<340	0
Bromoform Carbon tetrachloride	µg/m3	520	<520	<520	0
Chlorodibromomethane	μg/m3	430	<430	<430	0
Chloroethane	µg/m3	130	<130	<130	0
Chloromethane	μg/m3 μα/m3	240	<240 <100	<240 <100	0
cis-1,2-dichloroethene	µg/m3	20	<100	<100	0
cis-1,3-dichloropropene	µg/m3	230	<230	<230	0
Hexachlorobutadiene	μg/m3	530	<530	<530	0
Tetrachloroethene	µg/m3	340	<340	<340	0
rans-1,2-dichloroethene Trichloroethene	µg/m3 µq/m3	200 5.4	<200 <135	<200 <135	0
trans-1,3-dichloropropene	µg/m3	230	<230	<230	0
Vinyl chloride Acrylates	µg/m3	5.1	<63.8	<63.8	0
Methyl Methacrylate	µg/m3	210	<210	<210	0
NA		220	12.400	12 500	1
2,2,4-1 rimethylpentane Ethyl tert-Butyl Ether (ETBE)	μg/m3 μg/m3	230	<210	<210	0
Freon 114	µg/m3	350	908	936	3
tert-Butyl alcohol Butane	µg/m3	150	<150	<150	0
Propane	µg/m3	90,000	<180,000	<180,000	0
Propene Sample Droparation	µg/m3	90	<90.0	<90.0	0
Inert Gases (N2. Ar) by difference	Mol %	0.1	21.0	20.9	0
Inert Gases (N2. Ar) by difference	mg/m³		241,000	239,000	1
MAH 1,2.4-trimethvlbenzene	ua/m3	240	<240	<240	0
1,3,5-trimethylbenzene	µg/m3	240	<240	<240	0
1-methyl-4 ethyl benzene	µg/m3	240	<240	<240	0
n-butylbenzene	µg/m3	270	<270	<270	0
n-propylbenzene	μg/m3	250	485	468	4
Styrene	μg/m3	210	<210	<210	0
tert-butylbenzene	µg/m3	270	<270	<270	0
Halogenated Benzenes 1.2.4-trichlorobenzene	ua/m3	370	<370	<370	0
1,2-dichlorobenzene	µg/m3	300	<300	<300	0
1,3-dichlorobenzene	µg/m3	300	<300	<300	0
2-chlorotoluene	μg/m3	260	<260	<260	0
Chlorobenzene	µg/m3	230	<230	<230	0
naiogenated Hydrocarbons 1,2-dibromoethane	µa/m3	380	<380	<380	0
Bromomethane	µg/m3	190	<190	<190	0
Dichlorodifluoromethane	µg/m3 µa/m3	250 280	<250 <280	<250 <280	0
VOCs	руша	200	~~JU	~200	
2-isopropyltoluene	µg/m3	270	<270	<270	0
Acrolein	μg/m3 μg/m3	110	<100	<110	0
Diisopropyl ether	µg/m3	210	<210	<210	0
Vinyl bromide (bromoethene) Freon 113	µg/m3 µa/m3	220 380	<220 <380	<220 <380	0
РАН	руппо		-550		
Naphthalene	µg/m3	100	<100	<100	0
Solvents		╉──────┤			+
tert-Amyl Methyl Ether (TAME)	µg/m3	210	<210	<210	0
1,3-Butadiene 1,4-Dioxane	µg/m3 µa/m3	110 180	<110 <180	<110 <180	0
Methyl Ethyl Ketone	µg/m3	150	<150	<150	0
2-hexanone (MBK)	µg/m3	200	<200	<200	0
	µg/m3	120	<1200	<120	0
Acetonitrile	µg/m3	80	<80.0	<80.0	0
Acryionitrile Allyl chloride	μg/m3 μα/m3	110 160	<110 <160	<110 <160	0
Carbon disulfide	µg/m3	160	<160	<160	0
Cyclohexane Ethanol	µg/m3	170 90	4,540 <90.0	4,610 <00.0	2 0
Ethyl acetate	μg/m3	180	<180	<180	0
Heptane	µg/m3	200	1,280	1,290	1
MTBE	µg/m3 µa/m3	180	43,000 <180	43,300 <180	0
2-Propanol	µg/m3	120	432	280	43
Tetrahydrofuran Vinyl acetato	µg/m3	150	<150	<150	0
villyi acciale	нулпа	100	V10U	<10U	V

*RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Table 5a QAQC Results - Soil Field Blanks GWS Giants CoE 1 Olympic Boulevard, Olympic Park NSW 2207292

		Field ID	TRB1
		Date	08 May 2023
		Matrix Type	Soil
		Lab Report Number	ES2316686
	Unit	EQL	
трн			
C6-C9 Fraction	mg/kg	10	<10
TRH			
C6-C10 Fraction	mg/kg	10	<10
C6-C10 minus BTEX (F1)	mg/kg	10	<10
BTEX			
Benzene	mg/kg	0.2	<0.2
Toluene	mg/kg	0.5	<0.5
Ethylbenzene	mg/kg	0.5	<0.5
Xylene (m & p)	mg/kg	0.5	<0.5
Xylene (o)	mg/kg	0.5	<0.5
Xylene Total	mg/kg	0.5	<0.5
Total BTEX	mg/kg	0.2	<0.2
Naphthalene (VOC)	mg/kg	1	<1

Table 5b QAQC Results - Water Field Blanks GWS Giants CoE 1 Olympic Boulevard, Olympic Park NSW 2207292

		Field ID	RB1
		Date	18 May 2023
		Matrix Type	Water
		Lab Report Number	ES2316686
	Unit	EQL	
ТРН			
C6-C9 Fraction	µg/L	20	<20
C10-C14 Fraction	μg/L	50	<50
C15-C28 Fraction	μg/L	100	<100
C29-C36 Fraction	µg/L	50	<50
C10-C36 Fraction (Sum)	µg/L	50	<50
TRH			
C6-C10 Fraction	μg/L	20	<20
C6-C10 minus BTEX (F1)	μg/L	20	<20
>C10-C16 Fraction	µg/L	100	<100
>C10-C16 Fraction minus Naphthalene (F2)	µg/L	100	<100
>C16-C34 Fraction (F3)	µg/L	100	<100
>C34-C40 Fraction (F4)	µg/L	100	<100
>C10-C40 Fraction (Sum)	µg/L	100	<100
BTEX			
Benzene	µg/L	1	<1
Toluene	µg/L	2	<2
Ethylbenzene	μg/L	2	<2
Xylene (m & p)	μg/L	2	<2
Xylene (o)	µg/L	2	<2
Xylene Total	µg/L	2	<2
Total BTEX	µg/L	1	<1
Naphthalene (VOC)	mg/L	0.005	< 0.005

Appendix A: Proposed Development Drawings and Planning Report

	REFERENCE MAP	4	8m
	CLIENT	NTS	
	STRUCTURAL, CIVIL AND	D SERVICES ENGINEER MAFFEIS engineering	
	LANDSCAPE ARCHITECT		
	COST CONSULTANT		
ROAD	DISCLAIMER		
	USE FIGURED DIMENSIC FROM DRAWING CHECK ON SITE BEFORE FABRI This drawing is diagramma Any information involving r from documented dimensi drawings, workshop drawin works shall comply with th Begulations	DNS ONLY DO NOT SCA & VERIFY ALL DIMENSI CATION OR SET OUT. atic and shows general ar measurement of the works ons on the architectural a ngs by others and condition e contract conditions and	LE ONS rangements. s shall be taken nd structural ons on site. The Statutory
	All rights reserved. This we reproduced or copied in ar electronic or mechanical, i permission of Populous ar expressed or implied, to us whatsoever is restricted to agreement between Popul	ork is copyright and canno ny form or by any means of ncluding photocopying wi chitects in association. Ar se this document for any p the terms of the agreeme lous and the instructing pa	ot be graphic, thout the written by licence, purpose ent or implied arty.
	THIS DRAWING IS AN UNCONREVDE1FOR INFORMATION &2FOR INFORMATION &3FOR INFORMATION &3FOR INFORMATION &4FOR INFORMATION &5FOR INFORMATION &6FOR INFORMATION &7FOR INFORMATION &8FOR INFORMATION &9FOR INFORMATION &	TROLLED COPY. UNLESS NO SCRIPTION REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW REVIEW	TED OTHERWISE DATE 08.07.2022 18.07.2022 21.07.2022 26.07.2022 11.08.2022 18.08.2022 20.08.2022 30.08.2022 12.09.2022
	ARCHITECT POPU ABN 55 072 891 993	LOUS	0
	71 Boundary Street GPO Box 5290 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(0) 7 3839 9188 PROJECT GWSTF 1 Olympic Blvd, Sydney Olympic F	www.p E-mail: sport.au@p Park NSW 2127	opulous.com opulous.com
	SHEET TITLE GROUND LEVEL	ga plan	
	PROJECT NUMBER		
	COORDINATED KD	APPROVED AB	

ORIGINAL SHEET SIZE A1 - 841mm x 594mm

	REFERENCE MAP	8m
	STRUCTURAL, CIVIL AND SERVICES ENGINEER	
	PROJECT MANAGER	
	COST CONSULTANT	
ROAD	NOTES	
	USE FIGURED DIMENSIONS ONLY DO NOT SCALE FROM DRAWING CHECK & VERIFY ALL DIMENSIONS ON SITE BEFORE FABRICATION OR SET OUT. This drawing is diagrammatic and shows general arrang Any information involving measurement of the works sha from documented dimensions on the architectural and st drawings, workshop drawings by others and conditions of works shall comply with the contract conditions and Stat	ements. all be taken tructural on site. The utory
	Regulations. All rights reserved. This work is copyright and cannot be reproduced or copied in any form or by any means grapl electronic or mechanical, including photocopying withou permission of Populous architects in association. Any lic expressed or implied, to use this document for any purp whatsoever is restricted to the terms of the agreement o agreement between Populous and the instructing party.	hic, t the written ence, ose r implied
	THIS DRAWING IS AN UNCONTROLLED COPY. UNLESS NOTED REV DESCRIPTION 1 FOR INFORMATION & REVIEW 2 FOR INFORMATION & REVIEW 3 FOR INFORMATION & REVIEW 4 FOR INFORMATION & REVIEW	OTHERWISE 11.08.2022 18.08.2022 30.08.2022 12.09.2022
	ARCHITECT POPULOUS [®]	
	ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 5290 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 www.popu f: +61(0) 7 3839 9188 E-mail: sport.au@popu PROJECT GWSTF 1 Olympic Blvd, Sydney Olympic Park NSW 2127 SHEET TITLE ROOF PLAN	lous.com lous.com
	PROJECT NUMBER 7767 AB COORDINATED APPROVED KD AB SCALE 100% @ A1 NORTH POINT	
OR INFORMATION	1:100 N 19.18° W PHASE DRAWING NUMBER CD AR-20-0002	REVISION 4
		т

	1:100 CLIENT	
	GIA	NTS
		AFFEIS gineering
	PROJECT MANAGER	
	LANDSCAPE ARCHITECT	
	COST CONSULTANT	
ROAD	NOTES	
	DISCLAIMER USE FIGURED DIMENSIONS FROM DRAWING CHECK & V	ONLY DO NOT SCALE /ERIFY ALL DIMENSIONS
	ON SITE BEFORE FABRICAT This drawing is diagrammatic a Any information involving mea from documented dimensions drawings, workshop drawings works shall comply with the co Begulations	TON OR SET OUT. and shows general arrangements. surement of the works shall be taken on the architectural and structural by others and conditions on site. The intract conditions and Statutory
	All rights reserved. This work i reproduced or copied in any for electronic or mechanical, inclu permission of Populous archite expressed or implied, to use th whatsoever is restricted to the agreement between Populous	s copyright and cannot be orm or by any means graphic, ding photocopying without the written ects in association. Any licence, his document for any purpose terms of the agreement or implied and the instructing party.
	THIS DRAWING IS AN UNCONTRO	LLED COPY. UNLESS NOTED OTHERWISE
	REVDESCF1FOR INFORMATION & REV2FOR INFORMATION & REV3FOR INFORMATION & REV4FOR INFORMATION & REV5FOR INFORMATION & REV	DATE IEW 11.08.2022 IEW 18.08.2022 IEW 22.08.2022 IEW 30.08.2022 IEW 12.09.2022
	ARCHITECT POPUL ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 5290 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(0) 7 3839 9188 PROJECT GWSTF 1 Olympic Blvd, Sydney Olympic Park 1	www.populous.com =-mail: sport.au@populous.com
	ARCHITECT POPUL ARCHITECT POPUL ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 52 90 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(0) 7 3838 7900 f: +61(0) 7 3839 9188 PROJECT GWSTF 1 Olympic Blvd, Sydney Olympic Park M SHEET TITLE DRAINAGE & MECHA OVERALL PLAN	www.populous.com
	ARCHITECT POPUL ARCHITECT POPUL ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 5290 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(0) 7 3838 7900 f: +61(0) 7 3839 9188 PROJECT GWSTF 1 Olympic Blvd, Sydney Olympic Park M SHEET TITLE DRAINAGE & MECHA OVERALL PLAN PROJECT NUMBER 7707	SOUS® Www.populous.com =mail: sport.au@populous.com NSW 2127 ANICAL SERVICES
	ARCHITECT POPUL ARCHITECT POPUL ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 5290 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(Section 2012 Section 2012 Se
	ARCHITECT POPUL ARCHITECT POPUL ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 5290 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(0) 7 3839 9188 PROJECT GWSTF 1 Olympic Blvd, Sydney Olympic Park 1 SHEET TITLE DRAINAGE & MECH OVERALL PLAN PROJECT NUMBER 7767 COORDINATED KD SCALE 100% @ A1 1 · 100	ANICAL SERVICES

	REFERENCE MAP		
			and the second sec
	0 2	4	8m
	CLIENT		
		7	
		MAFFEIS engineering	
	PROJECT MANAGER		
	E D	DC	
	LANDSCAPE ARCHITEC	r	
	COST CONSULTANT		
	NOTES		
	DISCLAIMER USE FIGURED DIMENSIO		
	ON SITE BEFORE FABRI	CATION OR SET OUT.	rangements
	Any information involving from documented dimensi drawings, workshop drawi	measurement of the works ons on the architectural a ngs by others and condition	s shall be taken nd structural ons on site. The
	works shall comply with th Regulations.	e contract conditions and	Statutory
	All rights reserved. This we reproduced or copied in an electronic or mechanical, i	ork is copyright and canno ny form or by any means o ncluding photocopying wi	ot be graphic, thout the written
	permission of Populous ar expressed or implied, to us whatsoever is restricted to	chitects in association. Ar se this document for any p the terms of the agreeme	ny licence, ourpose ent or implied
	THIS DRAWING IS AN UNCON	TROLLED COPY. UNLESS NO	TED OTHERWISE
	REVDE1FOR INFORMATION &2FOR INFORMATION &	SCRIPTION REVIEW REVIEW	DATE 11.08.2022 18.08.2022
	3 FOR INFORMATION & 4 FOR INFORMATION &	REVIEW	22.08.2022 12.09.2022
	ARCHITECT		
	POPU	LOUS	0
	ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 5290		
	Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(0) 7 3839 9188	www.p E-mail: sport.au@p	opulous.com opulous.com
	PROJECT		
	GWSIF 1 Olympic Blvd, Sydney Olympic F	Park NSW 2127	
	SHEET TITLE		
	OCCUPANCY PLA	AN	
		DEVIEWED	
	7767	Checker	
		Approver	~
	1:100 @ AT	N 19.18° W	
UN	PHASE DRAWING N CD AR-20-	NUMBER -0004	REVISION

			RFF	ERENCE MAP		
(M)					Ar .
			0	2 4	1	8m
			1:10 CLIE	U NT		
 	<u>350</u>					
				GIAN	ITS	
			STR	UCTURAL, CIVIL AND SERV	ICES ENGINEER	
					FFEIS neering	
			PRO	JECT MANAGER		
				FD		
			COS	T CONSULTANT		
			NOT	ES		
	19	0.800 m				
			DISC	CLAIMER		
		3.800 m	USE FRO	FIGURED DIMENSIONS ON M DRAWING CHECK & VER	ILY DO NOT SCALE	NS
			ON S		I OR SET OUT.	agomente
	<u>POOL PLANT H</u>		Any i from	drawing is diagrammatic and information involving measure documented dimensions on f	shows general arra ement of the works s the architectural and	ngements. shall be taken structural
		.800 m	draw work	ings, workshop drawings by o s shall comply with the contra	others and condition act conditions and S	s on site. The atutory
			Regu	llations.	povright and cannot	he
			repro	oduced or copied in any form ronic or mechanical, including	or by any means gra g photocopying with	aphic, out the written
*	LEVEL 00 - GF		perm expre	ission of Populous architects essed or implied, to use this of soever is restricted to the terr	in association. Any locument for any pu	licence, rpose tor implied
	15	5.800 m	agree	ement between Populous and	the instructing part	y.
			THIS REV	DRAWING IS AN UNCONTROLLEI	D COPY. UNLESS NOTE	D OTHERWISE
	POOL PLANT		1 2	FOR INFORMATION & REVIEW FOR INFORMATION & REVIEW		30.08.2022 02.09.2022
		.200 m				
			ABN 5	5 072 891 993		
			71 B GPO	SBANE oundary Street Box 5290		
			Brisb AUS t: +6	ane QLD 4000 TRALIA 1(0) 7 3838 7900 1(0) 7 3839 9188 F-m	www.poj aail: sport au@poj	pulous.com
			PRO	JECT		
XXX.			GW	/STF	0107	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	///////////////////////////////////////		1 Olyr		2121	
			SHE	ET TITLE	SECTION	
			LO	NG SECTION	OLOHON	
			PRO. 77	JECT NUMBER	reviewed AB	
				RDINATED	APPROVED	
			SCAL	LE 100% @ A1		
			1: PH/	5U ASE DRAWING NUMBFI	N 19.18° W	REVISION
				D AR-40-000	1	2

Copyright POPULOUS @ 2019 9/2/2022 6:38:23 PM BIM 360://7/67 GWS SITE/7564 GWSTF TRF BLD

	REFERENCE MAP
	GIANTS STRUCTURAL, CIVIL AND SERVICES ENGINEER
	PROJECT MANAGER
	LANDSCAPE ARCHITECT
	COST CONSULTANT
	NOTES
LEVEL 02 - ROOF LEVEL	
19.800 m	DISCLAIMER
18.800 m	USE FIGURED DIMENSIONS ONLY DO NOT SCALE FROM DRAWING CHECK & VERIFY ALL DIMENSIONS ON SITE BEFORE FABRICATION OR SET OUT.
POOL PLANT HEIGHT 17.800 m	Any information involving measurement of the works shall be ta from documented dimensions on the architectural and structura drawings, workshop drawings by others and conditions on site. works shall comply with the contract conditions and Statutory
LEVEL 00 - GROUND	Regulations. All rights reserved. This work is copyright and cannot be reproduced or copied in any form or by any means graphic, electronic or mechanical, including photocopying without the win permission of Populous architects in association. Any licence, expressed or implied, to use this document for any purpose what coever is restricted to the terms of the agreement or implied
15.800 m	agreement between Populous and the instructing party.
POOL PLANT LEVEL	REV DESCRIPTION DA 1 FOR INFORMATION & REVIEW 02.09.
14.200 m	
	ARCHITECT POPULOUS * ABN 55 072 891 993 BRISBANE 71 Boundary Street GPO Box 5290 Brisbane QLD 4000 AUSTRALIA t: +61(0) 7 3838 7900 f: +61(0) 7 3839 9188 E-mail: sport.au@populous.c PROJECT GWSTF 1 Olympic Blvd, Sydney Olympic Park NSW 2127 SHEET TITLE OVERALL POOL HALL SECTION SHORT SECTION
	PROJECT NUMBER REVIEWED 7767 AB COORDINATED APPROVED KD AR
	SCALE 100% @ A1 1:50 PHASE DRAWING NI IMBER
FUK INFUKIVIATION	CD AR-40-0002

RIGINAL SHEET SIZE A1 - 841mm x 594mm

Property Report

1 OLYMPIC BOULEVARD SYDNEY OLYMPIC PARK 2127

Property Details

Address:	1 OLYMPIC BOULEVARD SYDNEY OLYMPIC PARK 2127
Lot/Section /Plan No:	10/-/DP1217982
Council:	CITY OF PARRAMATTA COUNCIL

Summary of planning controls

Planning controls held within the Planning Database are summarised below. The property may be affected by additional planning controls not outlined in this report. Please contact your council for more information.

Land Zoning	B4 - Mixed Use: (pub. 24-3-2016)
Height Of Building	122 m
Floor Space Ratio	6:1
Minimum Lot Size	NA
Heritage	NA
Land Reservation Acquisition	NA
Foreshore Building Line	NA
Acid Sulfate Soils	Disturbed terrain

Detailed planning information

State Environmental Planning Policies which apply to this property

State Environmental Planning Policies can specify planning controls for certain areas and/or types of development. They can also identify the development assessment system that applies and the type of environmental assessment that is required.

- State Environmental Planning Policy (Affordable Rental Housing) 2009: Land Application (pub. 31-7-2009)
- State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004: Land Application (pub. 25-6-2004)
- State Environmental Planning Policy (Concurrences) 2018: Land Application (pub. 21-12-2018)
- State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017: Land Application (pub. 1-9-2017)

This report provides general information only and does not replace a Section 10.7 Certificate (formerly Section 149)

Property Report

1 OLYMPIC BOULEVARD SYDNEY OLYMPIC PARK 2127

- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Land Application (pub. 12-12-2008)
- State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004: Land Application (pub. 31-3-2004)
- State Environmental Planning Policy (Infrastructure) 2007: Land Application (pub. 21-12-2007)
- State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007: Land Application (pub. 16-2-2007)
- State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007: Land Application (pub. 28-9-2007)
- State Environmental Planning Policy (Primary Production and Rural Development) 2019: Land Application (pub. 28-2-2019)
- State Environmental Planning Policy (State and Regional Development) 2011: Subject Land (pub. 28-9-2011)
- State Environmental Planning Policy (State Significant Precincts) 2005: Subject Land (pub. 23 -3-2012)
- State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017: Subject Land (pub. 25-8-2017)
- State Environmental Planning Policy No 19—Bushland in Urban Areas: Land Application (pub. 24-10-1986)
- State Environmental Planning Policy No 1—Development Standards: Land Application (pub. 17-10-1980)
- State Environmental Planning Policy No 21—Caravan Parks: Land Application (pub. 24-4-1992)
- State Environmental Planning Policy No 33—Hazardous and Offensive Development: Land Application (pub. 13-3-1992)
- State Environmental Planning Policy No 36—Manufactured Home Estates: Land Application (pub. 16-7-1993)
- State Environmental Planning Policy No 50—Canal Estate Development: Land Application (pub. 10-11-1997)
- State Environmental Planning Policy No 55—Remediation of Land: Land Application (pub. 28-8-1998)
- State Environmental Planning Policy No 64—Advertising and Signage: Land Application (pub. 16-3-2001)
- State Environmental Planning Policy No 65—Design Quality of Residential Apartment Development: Land Application (pub. 26-7-2002)
- State Environmental Planning Policy No 70—Affordable Housing (Revised Schemes): Land Application (pub. 1-5-2002)
- Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005: Land Application (pub. 28-6-2016)

Property Report

1 OLYMPIC BOULEVARD SYDNEY OLYMPIC PARK 2127

Other matters affecting the property

Information held in the Planning Database about other matters affecting the property appears below. The property may also be affected by additional planning controls not outlined in this report. Please speak to your council for more information

Land near High Pressure Pipelines This property may be located near High Pressure Pipelines and

This property may be located near High Pressure Pipelines and could be subject to requirements listed under ISEPP Clause 66C. Please contact the relevant consent authority for more information.

Local Aboriginal Land Council METROPOLITAN

This report provides general information only and does not replace a Section 10.7 Certificate (formerly Section 149)

Appendix B: NSW EPA and SOPA Notices

Environment Protection Authority

Maintenance of remediation notice

Sections 28 of the Contaminated Land Management Act 1997

REGISTERED MAIL

Sydney Olympic Park Authority 7 Figtree Drive SYDNEY OLYMPIC PARK NSW 2127

Attention: Mr David Young, General Manager Operations & Sustainability

Notice Number: 28040

This notice is issued under section 28 of the Contaminated Land Management Act 1997 ("the Act").

Sydney Olympic Park Authority (SOPA), "the recipient", must maintain remediation action in accordance with the requirements set out in this notice.

1. Land to which this notice applies ("the land")

This notice applies to the following waste containment areas within the Sydney Olympic Park:

Aquatic Centre Carpark Landfill; Bicentennial Park Landfill; Blaxland Common Landfill; Golf Driving Range Landfill; Kronos Hill Landfill; Woo-La-Ra Landfill and Wilson Park Bioremediation.

Their locations and boundaries are defined in the <u>attached map</u>. This map is referenced as 001-G-G-0112 Rev. B and is contained in a SOPA document entitled "*Remediated Lands Management Plan January 2009*".

2. Background

The Sydney Olympic Park ("the SOP") was the venue of the Sydney 2000 Olympic Games. It is located at Homebush Bay – a large piece of land that had been used for uncontrolled landfilling for many years before it was redeveloped as the major Games venue. This resulted in wide spread contamination of the area. Assessment of the contamination in the areas began in the late 1980's and site remediation began in the early 1990's.

With the exception of the remediation of Wilson Park, the remediation strategy was to consolidate and recontain the waste into several areas within the SOP. In the process, the majority of the SOP area had the buried waste removed and was subsequently redeveloped for the Games. The excavated waste was transferred to the designated waste containment areas. These areas, which include but are not limited to the land of which this notice applies, were capped, landscaped and turned into parkland. Leachate collection and transfer systems were also built to prevent leachate from escaping.

Wilson Park was a former Gasworks site. The nature of the contamination is waste liquid tar rather than uncontrolled landfilling. However, the remediation strategy adopted is also "cap-and-contain" similar to the remediation of the landfilling areas within the SOP.

The remediation of the waste containment areas of which this notice applies occurred at different timelines. Therefore, these waste containment areas were regulated by the Environment Protection Authority ("EPA") on an individual basis. The regulatory instruments include notices issued under section 35 of the Environmentally Hazardous Chemicals Act, voluntary remediation agreement under section 23 of the Act and notices under section 28 of the Act depending on the stage of the remediation at the time the regulatory instruments were issued. The EPA however has envisioned that these regulatory instruments will eventually be converted into a single maintenance of remediation notice under section 28 of the Act.

In March 2007, SOPA provided the EPA with a draft document entitled *Remediated Landfill Systems* – *Operational Management Plan*. This represents SOPA's attempt to deal with the post-remediation management of the waste containment areas in a holistic way.

This document was subsequently revised and renamed to "*Remediated Lands Management Plan*". The revised document is supplemented with environmental monitoring data collected between years 2002 – 2007. The EPA is generally satisfied with the monitoring results, which suggest that the waste containment areas pose no unacceptable impact on their surrounding environment. The EPA however considers that additional environmental groundwater monitoring points will be required for some of the waste containment areas.

3. Commencement of this notice

This notice takes effect from the date of this notice and continues in force as varied from time to time, until it is revoked.

4. Maintenance and reporting requirements

Implementing the Remediated Lands Management Plan

A. The recipient must manage the post-remediation of the land in accordance with the SOPA document entitled "*Remediated Lands Management Plan January 2009*" or its subsequent revisions that have been accepted by the EPA ("the RLMP"). In particular, the recipient must carry out the environmental monitoring program in accordance with Section 11 of the RLMP under the heading "*Environmental Monitoring, Performance Assessment and Report*".

Additional environmental groundwater monitoring points that may be required

B. Within 12 months of the date of this notice, the recipient must provide the EPA with a report justifying the groundwater monitoring strategy at Blaxland Common landfill and Kronos Hill landfill, including any additional groundwater monitoring points that have been or will be installed.

Reporting to the EPA

- C. The recipient must prepare a report once every two years. The report must include but is not necessarily limited to:
- 1) The reporting of the operational performance of the waste containment systems in the preceding two years;
- 2) The sampling and laboratory results of the monitoring program listed in Table 11.1 of the RLMP; and
- 3) The interpretation of the sampling and laboratory results with respect to the performance of the waste containment systems.
- D. The report must be reviewed by a site auditor accredited under the Act in relation to the performance of waste containment systems.
- E. The first report and the auditor's review of the report must be provided to the EPA within 24 months from the date of this notice.
- F. The subsequent reports and the auditor's review of the reports must be submitted to the EPA in a frequency of once every two years until such time that the EPA varies the frequency of the submission.

5. Notification of change of owner/occupier

At least 30 days prior to the recipient ceasing to be the owner or occupier of the land to which this notice applies the recipient must give written notification to the EPA of the name and contact details of the prospective owner or occupier.

[Signed]

NIALL JOHNSTON Manager Contaminated Sites

Date: 23 January 2009

NOTE:

Breaches of this Notice

A person who fails to comply with a notice issued under section 28 of the Act is guilty of an offence. Heavy penalties may be imposed where a person fails to comply with directions given in a notice issued under section 28 of the Act.

Information recorded by the EPA

Section 58 of the Contaminated Land Management Act 1997 and clause 6 of the Contaminated Land Regulation requires the EPA to maintain a public record. A copy of this notice will be included in the public record.

3.5 Golf Driving Range

Former names: Homebush Common, Southern Threshold, State Sports Centre Precinct

3.5.1 Summary

The Golf Driving Range landfill (consolidated landfill from 3 separate landfills operating from the 1960s to 1980s) covers an area of 6.2 hectares adjoining Boundary Creek. The final landform was capped and landscaped, and a combined subsoil landfill gas capture system and extraction leachate system was installed.

Remediation was initially completed in 1994, however additional remediation works were undertaken between 1998 – 1999 with additional fill being added. This additional load increased leachate production so further works were conducted to automate leachate collection and connect it to LLWP. This was completed by 2000. An Independent Site Auditor issued a Site Audit Statement on 14 December 2000 (WRR85) declaring the site suitable for use as "*Park, recreational open space and playing field*"

Subject to:

- preparation and implementation of an auditor approved Environmental Management Plan including but not limited to controls to alteration of landforms and excavations to a depth of 0.5 metres
- Implementation of an auditor approved groundwater monitoring program to assess the impact of residual soil contamination on groundwater quality and potential risk to the environment

The Golf Driving Range landfill and leachate interception and pumping system require ongoing management to ensure system integrity and environmental protection, and to meet legal requirements. Site-specific key management objectives and responses are described in Table 3.5.1

3.5.2 Site history

The Golf Driving Range (GDR) landfill is a consolidation of 3 separate landfills from the State Sports Centre Precinct. The precinct was used for the uncontrolled tipping of municipal waste from 1965 to 1982. Waste was stockpiled in three separate landfills over a 42 hectare site north of the rail line; the Western, Northern (now the Golf Driving Range) and Southern landfills. The waste comprised a heterogeneous mix of a wide variety of constituents including variable quantities of putrescible fill.

A remediation strategy for the State Sports Centre site was developed in 1991. Part of the remediation strategy was to consolidate contamination and implement some forms of environmental protection. This included the placement of a low-permeability clay cap and sub-surface drainage system, the installation of a leachate collection system and clay cut-off wall and the redirection and protection of Boundary Creek.

Works were undertaken to consolidate the three landfills into one. Between 1991 and 1993, 130,000 m³ of waste was shifted from the Western and Southern landfills to overlay the Northern landfill and create a 15 metre high mound. The Western and Southern landfills were then validated by visual inspection and testing of residual soils to ensure that all traces of contamination were removed prior to backfilling with clean imported fill. Remediation of the GDR was initially complete in March 1994 when the site was landscaped.

The original intent was to discharge collected leachate directly to sewer. Changes in Trade Waste requirements however, resulted in sewer discharge being abandoned in 1995 and the construction of a rising main to discharge the leachate to the Kronos Hill system was implemented. While the design and construction of this pipe was being finalised, leachate was extracted and disposed of to the Waste Service NSW Lidcombe Liquid Waste Plant by licensed liquid waste haulage vehicles. The pipe was commissioned in late 1998. To the north of the GDR landfill is an engineered mound, the Bicentennial Marker, which is a site feature made from construction rubble and road base.

OBJECTIVE	RESPONSE	MONITORING*	MANAGEMENT TARGETS
Comply with conditions of a Notice issued under Contaminated Lands Management Act	Manage Golf Driving Range landfill for use as a parklands/open space / playing fields, in accordance with the	Regular review of Remediated Lands Management Plan and associated procedures for effectiveness.	1. An auditor-approved Remediated Lands Management Plan is developed and implemented. Requirements of the Remediated Lands Management Strategy are applied to all management, operation and development activities.
Management Act 1997	Remediated Lands Management Plan and associated procedures.		2. An auditor-approved site-specific environmental monitoring program is implemented
			3. No construction of buildings, alteration of landforms, or excavations below 0.5m, without regulatory authority approval
Maintain integrity of	Waste exposure and surface	Regular visual inspections	4. System components in good condition
waste containment	water inflitration managed by waste encapsulation, surface		5. Capping has no evident surface cracks, potholes, depressions, fissures, erosion or exposure of waste
	drainage system		6. Good vegetation cover on vegetated areas, with no evident vegetation die-off or bare patches. Soil irrigated as required to maintain cover.
			7. No discoloured soil or pools of visually evident leachate at toe and batter (particularly after heavy rain when groundwater tables are elevated).
			8. Stormwater detention ponds have no evident scouring and good plant growth
			9. Proper reinstatement after excavations so erosion risk is minimised.
			10. No offensive odour emanating from site
Prevent leachate migration to	Manage the leachate collection and transfer system to maintain	SCADA Static water level and chemical	 PP6 is maintained below 101.2 (analysis of past monitoring data allows for an additional 1.3m safety factor)
groundwater and surface waters	an inward hydraulic gradient between the containment mound and Boundary Creek	monitoring	12. Key leachate indicators are not detected in groundwater outside the leachate collection drain
			13. Leachate drains are operating freely – as confirmed by pump operational data and water level measurements in pump pits and leachate drains
Manage surface gas emissions	Two gas extraction systems installed – on turfed landfill	Operational checks of fans	14. Excavations at P3 carpark and at Golf Driving Range avoid damage to subterranean infrastructure
	surface, and at adjacent P3 Carpark		15. Fans at golf amenities block and P3 carpark are operational

Table 3.5.1 Site-specific management objectives for Golf Driving Range

* see section 11 for detailed program

As part of Olympic Overlay works, the GDR was recontoured during late 1999 / early 2000. The earthworks incorporated some waste movement and recontouring, restoration of the clay cap, minor modifications to the leachate system, the installation of a gas drainage layer and the restructure of the sub-surface drainage system. The site was approved for use as "*Park, recreational open space, playing field*" by an independent site auditor in 2000.

The site was used as a major public recreation / food concession area during the 2000 Olympic Games.

3.5.3 Operational overview

The strategic location of the leachate collection drain is designed to intercept the contaminated water before it can flow beyond the site boundaries. A typical chemical composition of leachate from the GDR is provided in Table 3.5.2.

The drains are graded, so that the collected leachate flows to one of two pumping pits (PP6 and 7). Leachate is stored in the pumping pits until the pump identifies that the height of leachate begins to rise within the pit. At this point, pumping is automatically activated. Leachate combined from the two pits is discharged via a rising main to PP1 of the Kronos Hill leachate system and eventually to LLWP.

Automation of the system is controlled from the SCADA system. Details of the SCADA system are found in section 6. The system monitors the levels in each pumping pit, which pumps are operating, the volume of leachate discharged from the system and the rate of leachate discharge.

The CADD drawing of the Golf Driving Range landfill in Appendix 4 shows the position of the leachate drain, collection sumps and monitoring piezometers.

3.5.4 System components

3.5.4.1 Waste Containment System

The purpose of the waste containment system is to encapsulate contaminated waste material, preventing the exposure to both people and the environment.

The waste containment system consists of:

<u>Capping</u> – Capping consists of a 650mm thick layer of validated low-permeability clay spread over the waste. Immediately above the clay capping is a 300mm layer of drainage sand. 100mm of topsoil and turf overlies the drainage media. The capping reduces stormwater infiltration thus reducing the generation of leachate. The capping also allows the landfill to be used for recreation by eliminating the risk of human exposure to contaminants.

<u>Vertical cut-off barrier</u> – A compacted clay wall / bentonite liner is constructed along the Northern edge of Boundary Creek (that is, between the leachate drain and the creek). The materials combine to act as an impermeable barrier and prevent leachate from migrating toward the creek. The liner is laid into residual clays and to the height of the gabions which are located along the creek bank (RL102.0). An impermeable liner is also laid along the creek bed to restrict any groundwater inflow.

<u>Residual clay</u> – The waste is placed on low-permeability residual clays to limit the downward migration of waste and leachate.

3.5.4.2 Leachate Collection System

The purpose of the leachate collection system is to intercept leachate, preventing contamination of the natural ground and surface waters. The collection system is also responsible for diverting leachate to the transfer system (pumping pits).

The leachate collection system consists of:

<u>Leachate drain</u> – The leachate drain is a longitudinal trench excavated approximately one metre into residual clays. In the trench, an 'Atlantis' polyethylene drainage cell is encapsulated with filter

mesh and overtopped with approximately 1500mm of drainage sand. The drain is located around the down-gradient perimeter of the landfill. Thus, the natural outward flow of leachate is intercepted by the sand and leachate filters into the drain. Gravity allows the leachate to travel through the drain and be directed into the nearest pumping pit.

<u>Pumping pits</u> – Each pumping pit is made of a precast concrete well, installed vertically onto a concrete base slab. The interface is sealed with an epoxy mortar. A concrete lid and ladder rungs provide access for maintenance and cleaning. A small capped hole within the concrete lid provides convenient access for inspection. The pit acts as a reservoir, storing collected leachate until such time that it is pumped to the transfer system. A total of two pumping pits (Pump Pits 6 and 7) are located along the leachate drain.

<u>Piezometers</u> – The piezometers are a length of 50mm poly-pipe installed vertically into the leachate drain or on the outside of the cut of walls. The top of the piezometer is located above the ground in a lockable protective monument. The piezometer enables access for extraction of samples for analysis and measurements of leachate and groundwater levels.

<u>Sumps</u> – A series of three sumps enable additional sampling and leachate level monitoring to be undertaken. The sumps consist of a 200mm diameter plastic pipe installed vertically into the fill, backfilled with blue metal. The sumps are constructed outside the leachate drain, along the bank of Boundary Creek. The sumps were installed following groundwater studies of the GDR landfill in 1998. Leachate seeps were identified along the creek bank during these studies. The sumps were installed to collect the seeps before they could migrate to Boundary Creek. One piezometer (9a) is also located outside the leachate drain to assist with the early identification of seeps.

<u>Pumping wells</u> – A series of two pumping wells enables sampling and leachate level monitoring to be undertaken. The wells consist of a 200mm diameter plastic pipe installed vertically into the leachate drain. The wells were also constructed during 1998 groundwater studies of the GDR landfill. The wells were installed to provide additional, temporary points for leachate extraction. These wells are not required for pumping and are usually dry.

3.5.4.3 Leachate Transfer System

The purpose of the leachate transfer system is to extract leachate from the pumping pits and transfer it to the treatment plant. The leachate transfer system consists of:

<u>Submersible pumps</u> – Both pumping pits are fitted with a submersible pump. The pump is located at the bottom of the pit, connected to the top by a galvanised steel chain (the chain allows the pump to be removed from the pit for maintenance and service). The pumps are programmed to operate automatically. The pumps operate in a by-pass mode, whereby PP6 bypasses PP7. PP 6 and 7 then share the rising main, discharging the combined leachate to the Kronos Hill leachate system and eventually to the LLWP.

<u>Level sensors</u> – To prevent pump pit overflows, each pit contains one analog level transducer. The sensor is activated by the pressure of water in the pit relaying the information in % of leachate in the pit.

<u>Pump control</u> – Control of pumping from PP6 and 7 is coordinated by a Grundfos CU300, located on the gabion wall adjacent to Boundary Creek. The control panel consists of an electrical circuit board and a number of switches and acts as the electrical control for the pumps. The control panel is powered from a light pole on Shirley Strickland Avenue. The control panel also provides 'manual override' switches to allow isolation of equipment for servicing.

<u>System Control</u> - Automation of the system is controlled from the SCADA system maintained at PMC. The system uses miri AD2000 to monitor the levels and volume and rate of leachate discharge.

<u>Hydraulic Valve</u> - Pumping to Kronos Hill system through the rising main is controlled by a valve at PP1. When PP1 is at 'high level' the valve will close, preventing the flow of liquid through the rising main. The valve will also shut when the power to PP1 control panel (and thus the link between the

GDR and Kronos Hill systems) is cut off. This emergency function prevents the GDR system continuing to pump after a power failure.

<u>Discharge pipe / non-return valve</u> – A discharge pipe carries leachate from each pump to the top of the pit where it connects with the main discharge line. A non-return valve is fitted at the junction of these pipes to prevent leachate from draining back down the pipe and into the pit when the pipe is full.

<u>Discharge line</u> – There are two discharge lines for the GDR system. A 50mm pipe links PP6 to the main discharge pipe, in the valve pit adjacent to PP7. A 75mm pipe connects PP7 to PP1 at Kronos Hill. The discharge lines are constructed approximately 600mm below the surface. The pipes are a conduit for the transfer of leachate from the system to PP1 and eventually to the LLWP.

<u>Flow meters</u> – Electromagnetic flow meters are installed on the discharge of each pump pit to monitor individual pit performance. The display for these flow meters is located in the control cabinet. An additional flow meter is located at the discharge line outlet at Pump Pit 1 to monitor performance of the overall system. The flow meters allow both the rate and volume of discharge to be measured.

3.5.4.4 Sub-surface Drainage System

The sub-surface drainage system is designed to intercept stormwater infiltration, preventing it from entering the landfill and producing additional leachate. The sub-surface drainage system consists of an agricultural pipe located within the top of the clay cap. The pipe lies beneath a 300mm thick layer of drainage sand. Sub-surface drains are located in a herringbone pattern beneath the areas of the site which have minimal stormwater run-off (i.e. the flat, turfed section of the site).

Collected sub-surface waters are diverted via gravity, to the stormwater detention ponds located on the South-Eastern perimeter of the site.

3.5.4.5 Gas Extraction Systems

There are two gas extraction systems at the GDR Landfill.

1. A <u>gas drainage layer</u> is installed beneath the turfed section of the site, to intercept methane and other landfill gases before they reach the surface. The gas drainage system consists of a matrix of 160mm diameter MDPE pipes, located beneath the clay cap. A 400mm thick layer of drainage aggregate is located immediately above the pipe. The pipe is perforated on the under side allowing gases to be collected and entrapped. Collected gases are extracted, and vented into the atmosphere, by a fan situated at the rear of the golf amenities building.

2. A <u>gas extraction system</u> is located beneath the P3 Car Park to prevent gas accumulation. The system consists of a gas drainage blanket which collects and directs gases to venting pits. Gases are extracted by continuously operated fans and discharged via stacks, which extend from the pits to a height of 5 metres above the upper floor level of the car park.

3.5.5 System management

The landfill is managed in accordance with the objectives, strategy and specifications of the SOPA Remediated Land Management Plan.

Landfill management is a combination of preventative inspection and maintenance, and where required, supply of materials and corrective works of the hydraulic and electrical infrastructure. Regular reports are supplied to SOPA detailing works carried out and potential issues that require action.

The leachate transfer system is remotely monitored via the SCADA system (Section 6). This provides continuously updated data regarding the performance of the transfer system with comprehensive operational and maintenance data.

3.5.6 Contingency plans

Contingency plans and a series of Standard Operating Procedures (section 7) have been developed to address those situations where a system malfunction may lead to environmental harm.

The pump pits and drains provide a reservoir that can store leachate for several days in event of system failure, allowing time for repairs or alternative disposal to be arranged. The SCADA system remotely monitors leachate levels in the pump pits, and can automatically turn on or shut down pumps where levels exceed trigger points (thus preventing overflows), and log alarms for action by contractors. The SCADA system is monitored daily.

System component / issue Response Pump failure Replace pump within 48 hours. Tanker extraction if required System control / electrical / power Repair components ASAP. Tanker extraction failure and treatment of leachate at LLWP if required. Hydraulic failure (pipe rupture, failure Repair components ASAP. Tanker extraction and treatment of leachate at LLWP if required of valve) Liquid waste plant reaches capacity Dispose of leachate through alternative means eg other treatment plant.

Contingency plans for high-risk events at the Golf Driving Range landfill are:

3.5.7 Leachate composition

Typical compositional analysis of leachate collecting in PP6 and PP7 at the Golf Driving Range is detailed in the Table 3.5.2 following.

						0 0	
Analyte	Unit	PP6	PP7	Analyte	Unit	PP6	PP7
Alkalinity	mg/L	295	690	NO ₃	mg/L	0.04	7.6
AI	mg/L	<0.05	<0.05	NO ₂	mg/L	0.27	0.52
NH₃	mg/L	6.5	33	N (total)	mg/L	8,2	36
As	mg/L	<0.01	<0.01	к	mg/L	47	66
HCO₃	mg/L	360	840	PAH	ug/L	4.73	0
BOD	mg/L	10	81	P (total)	mg/L		0.02
Ca	mg/L	64	180	Na	mg/L	295	460
CO₃	mg/L	<1	<1	SO4	mg/L	135	155
CI	mg/L	420	780	TDS	mg/L	1160	2110
Cu	mg/L	<0.001	0.003	TPH C6-9	ug/L	<25	<25
CN	mg/L	<0.005	0.02	TPH C10-36	ug/L	460	1890
F	mg/L	0.39	0.37	Zn	mg/L	0.014	0.012
Fe	mg/L	0.05	0.01	insitu DO	(ppm)	12.30%	30.91%
Pb	mg/L	<0.001	<0.001	insitu EC	(mS/cm)	2.043	3.78
Mg	mg/L	26	67	insitu temp.	`C	17	13.6
Mn	mg/L	0.28	0.19	insitu redox	(mV)	-59	-71
				insitu pH		6.81	6.65

Table 3.5.2 Typical leachate chemical composition – Golf Driving Range July 2007

3.5.8 Environmental monitoring

A comprehensive environmental monitoring program is conducted as detailed in Section 11, with the following objectives:

- Assess the effectiveness of the containment structure.
- Identify off-site or on-site movement of leachate.

- Comply with the environmental monitoring requirements established in a Notice issued under the Contaminated Lands Management Act 1997.
- Enable performance assessment and reporting

The south eastern border of the Golf Driving Range with Boundary Creek has been previously identified as the direction of groundwater flow. This pathway has been isolated by means of leachate drains and impermeable lining. Two pump pits store collected leachate prior to it being transported to LLWP via rising main. There are several monitoring piezometers along the leachate drain length and three sumps located on the outer side of the drain adjacent to Boundary Creek which are used to monitor potential off site migration of contaminants.

Soil Volatile Organic Compound (VOC) emanation from the landfill is controlled by a sub-surface gas collection and extraction system. A site horticultural maintenance plan includes fertilising and mowing with the provision of surface irrigation.

3.5.8.1 Leachate analytes

In 2006, SOPA commissioned a review of leachate chemical quality from all landfills to:

- Define the crucial analytes required to monitor the integrity of the remediated land and determine potential environmental harm;
- Define the analytes regarded as superfluous after 6 years of data collection;
- Determine whether the chemical leachate monitoring data adequately helps identify potential leachate migration from remediated land;
- Identify any areas of remediated lands that may require additional monitoring and/or monitoring protocols initiated;
- Optimise a monitoring program that will be significantly more cost effective to SOPA.

[Hanitro Pty Ltd 2006. Leachate and Groundwater Chemical Monitoring Review at Sydney Olympic Park. Report to Sydney Olympic Park Authority].

Assessment of data from chemical monitoring of PP6 and PP7 identified the chemicals of concern that are derived from the original pollution source. Interestingly, BOD results which usually mimic ammonia levels are regularly <50 mg/L except for two occasions in 2002 and 2003. The chemical of concern regularly detected are:

- Ammonia (500 mg/L maximum)
- BOD (110 mg/L maximum)

Hydrocarbon contaminants that are typical of putrescible tip leachate arising from engine oils and greases, are found in low concentrations except for one occasion in 2001 where 0.10 mg/L PAHs were detected in PP6. Typical maximum concentrations since then are

- Total C6 C36 Petroleum Hydrocarbons (3.2 mg/L maximum)
- Polycyclic aromatic Hydrocarbons (0.014 mg/L maximum)

Also in low concentration are the following heavy metals/metalloids potentially derived from the original pollution source:

- Zinc (0.014 mg/L maximum)
- Cyanide (0.01 mg/L detected once since 2001 in PP7)
- Copper (0.005 mg/L maximum)
- Lead (0.003 mg/L)

Four other heavy metal or metalloid ions are also regularly detected in the leachate within the containment structures. It should be noted however that these four elements are natural components of estuarine clays, estuarine sediments and sea water and are unlikely to represent a specific pollution source.

- Iron (0.11 mg/L maximum)
- Manganese (0.97 mg/L maximum)

- Boron (1.6 mg/L maximum)
- Barium (2.4 mg/L maximum)

The groundwater monitoring program has not detected the heavy metals arsenic, cadmium, chromium, lead and mercury in leachate from the Golf Driving Range.

A variety of monovalent and divalent cations and anions are also regularly detected in this leachate source (sodium, potassium, calcium, magnesium, chloride, sulphate, nitrate, bicarbonate and fluoride). These analytes are typically found in natural sources such as clays and sea water and do not represent a specific pollution source.

A group of analytes previously analysed in GDR leachate analyses are regarded as being superfluous. These analytes were either:

- Never detected in leachate, (arsenic, cadmium, lead and mercury).
- Infrequently detected and near PQL (chromium).
- Typical natural mineral components of the local geology, (boron, barium, calcium, magnesium, iron, manganese, sodium and potassium).
- Typical natural anion components of seawater, saline clay soils or town water (chloride, fluoride, sulphate, carbonate, bicarbonate and hydroxide).

The current monitoring program reflects the outcomes of this review; analytes to be tested for at this landfill are identified in Table 11.2.

3.5.8.2 Gas monitoring review

SOPA commissioned a review of remediated lands gas monitoring data in 2007. Quarterly gas monitoring had been conducted since January 2001, and over six years of subsurface accumulated gas monitoring data and surface gas monitoring data for the Golf Driving Range landfill was analysed. Depleted oxygen levels were evident in some system components in some samples, surface gas concentrations of methane, oxygen, hydrogen sulfide and carbon monoxide were recorded at non-detectable or background levels.

The review concluded that the subsurface accumulative gas monitoring and surface gas monitoring program could be discontinued at the Golf Driving Range landfill. [Review of the remediated lands gas monitoring program at Sydney Olympic Park. October 2007. Environmental Earth Sciences report to Sydney Olympic Park Authority].

3.5.8.3 Assessment of containment effectiveness

The SCADA system continuously monitors leachate levels and activates the pumps. Containment effectiveness is assessed by reviewing SCADA operational data regarding leachate level management in the Australia Avenue arm of the leachate drain (below design level of RL 101.2), and assessing concentration of groundwater contaminants downgradient from the leachate drain. Manual static water level monitoring provides a check of operational data.

8 WORKS AND DEVELOPMENT ON REMEDIATED LANDFILLS

Any works or development on remediated landfills at Sydney Olympic Park must address the following:

- (i) Persons conducting works on remediated landfills must hold a SOPA Work Permit, and comply with Permit conditions. Prior to issue of this Permit, SOPA will assess proposed works for matters including consistency with the SOPA Remediated Lands Management Plan, the Parklands Plan of Management, and legislative requirements.
- (ii) Proposed works and developments on all remediated landfills (both within and outside the Parklands) must be consistent with the principles and guidelines stated in Table 8 and with the objectives identified for each individual landfill established in Section 3 of this Plan.
- (iii) Major works and development on remediated landfills are outside the scope of this Plan; any such proposals must be consider the strategies contained in Section 1 of this Plan, be individually assessed, and any necessary regulatory consents, approvals or licences obtained prior to commencement. Major works include construction of buildings, changes to physical or engineered infrastructure, excavations deeper than 0.5 metres that disturb a surface area greater than 80 square metres, or works that alter landforms including changes to contour drains and gradients.

Table 8 Principles and guidelines for proposed works and developments on remediated lands at Sydney Olympic Park

Generally works or activities that disturb or affect the integrity of the containment system should not occur. Works may occur to improve containment or reduce potential or threatened risk to human or environmental health. Changed uses may be appropriate where new technologies and practices provide a greater community good than the risk associated with containment system disturbance.

Before proceeding with any construction, works or activities associated with the containment system or any of the natural or built elements located over or adjacent to containment system, these works must be assessed and justified against the following:

- Protection of waste containment features, including pipelines, membranes, bunds and caps.
- Collection and application of relevant data to understand and/or improve management of remediated land or leachate, including new uses
- Assessment of potential adverse impact on human health or environmental damage.
- Compliance with relevant occupational health and safety plans and environmental protection requirements.
- Identification of potential technological or knowledge improvement and educational opportunities provided by the site remediation program.
- Sustainable management practices and processes.

[extract: Parklands Plan of Management (PoM Part 2 s5.2), Sydney Olympic Park Authority 2003]

(iv) Excavations deeper than 0.5m are prohibited on remediated landfills, except with approval of the Department of Environment and Climate Change. Approval has been granted for certain types of excavations, where they are conducted in accordance with the Standard Work Method in section 8.1 of the SOPA Remediated Lands Management Plan. SOPA must report on such excavations biannually.

8.1 Standard Work Method: Minor excavation works on remediated landfills at Sydney Olympic Park

8.1.1 Purpose

This method applies to approved minor excavation works in any of the lands identified in the Plan: Sydney Olympic Park Remediated Landfill Systems (Drawing 001-GG-0112) as subject to a CLM s28 notice.

8.1.2 Background

Remediation of Sydney Olympic Park has resulted in the formation of ten engineered remediated landfill areas. Typically these have 1 metre of clay capping over a consolidated waste containment mound, and subsurface cut-off walls and drainage systems. Disturbance to the cover and subsurface infrastructure must be managed to minimise environmental and health risks. Excavations deeper than 0.5m are prohibited on remediated landfills, except with the approval of the Department of Environment and Climate Change. Approval has been granted for certain types of excavations, where they are conducted in accordance with this Standard Work Method. SOPA must report on such excavations annually.

8.1.3 Responsibility

The SOPA Project Manager is responsible for ensuring:

- compliance with the Parklands Plan of Management (excavations over 0.5m deep are identified as a 'restricted activity' in relevant precincts)
- proposed excavations are of a type approved by DECC, and identified in this Standard Work Method
- this Work Method Statement is appropriately incorporated into relevant tender briefs, and contractor Work Permit Applications, and is implemented during the works.
- records of completed works (precinct, date, purpose and nature of work) are provided to SOPA Manager Environment & Ecology for reporting to DECC.
- Contractors are responsible for conducting works in accordance with approval conditions

8.1.4 Scope

This procedure applies only to works or activities that result in disturbance of a total land surface area of not more than 80m2 and that are listed in Table 8.1. It does NOT apply to major remediation works or where major excavation activities are required for construction of buildings. In these instances separate approval from the regulatory authority is required.

All permitted works must be conducted in accordance with the minor excavation works procedure (s8.1.5).

Table 8.1 Minor excavation works conditionally approved by DECC

Minor excavation works (deeper than 0.5m) permitted if the activity disturbs <u>no more than 80 square metres</u> of land surface area and <u>will not</u> result in the penetration of the clay capping

- Installation or investigation of services (gas, electricity, water, sewage, irrigation, leachate or communications) by means of open-cut or horizontal boring
- Installation or removal of posts, poles or support structures
- Installation of pathways or drainage lines
- Installation or removal of trees
- Installation or decommissioning of piezometers
- Environmental or geotechnical investigations
- Test pit investigations
- Emergency restoration works
- Other excavation and trenching activities that are part of a routine maintenance program

Minor excavation works (deeper than 0.5m) permitted if the activity disturbs <u>no more than 80 square metres</u> of land surface area and <u>will</u> result in the penetration of the clay capping or the disturbance of the buried waste

- Installation or decommissioning of groundwater monitoring/extraction wells or piezometers
- Installation or removal of posts, poles or support structures
- Environmental or geotechnical investigations resulting in minimal disturbance of waste oand creation of spoil, or
- Removal of trees

All permitted works must be conducted in accordance with standard Work Method

8.1.5 Minor Excavation Works Procedure

All works

- Check proposed works are consistent with Table 8.1
- 2. Identify underground services and endangered species habitats within the works footprint
- 3. Obtain a SOPA Work Permit
- 4. Cordon the works footprint off from the general public
- 5. Separate excavated topsoil and capping for reuse
- 6. Store excavated material on the high side of the excavation so that any liquid travels back into the pit.
- 7. Where stockpiles are kept for more than one day: cover excavated material and place erosion control measures around them
- 8. At the completion of works, replace excavated material in the reverse order that it was removed
- 9. Replace clay capping in 300mm layers
- Compact each layer with a powered compactor (whacker-packer) to a compaction density of 98%
- 11. Replace 100mm topsoil on clay capping
- 12. Fully restore landscape and irrigation
- 13. Use any excess spoil (from capping or topsoil) on-site for landscaping (this material has been previously validated; further validation is not required), or dispose off-site to a licensed landfill
- 14. Survey the location of new ground levels or new services/structures; provide information to SOPA CADD unit in electronic format within one week of completion of works

Works that penetrate the clay capping

Gas detection

- 15. Monitor gas levels during works
- 16. If methane levels exceed 5% LEL, implement constant natural airflow
- 17. Address risk of accumulated gas in the design and construction of new structures fill voids or include ventilation in design

Compaction of replaced waste

- 18. Compact waste with excavator bucket while being placed back into the excavation
- 19. Place liner or geofabric on top of waste prior to compacting the clay capping

Spoil from the waste mass

- 20. Place spoil from within the waste mass into labelled drums or skips. Test material for subsequent disposal to a licensed facility (at the contractors expense)
- 21. Seal all drums and bins, and cordon the area if contractors leave the worksite.

Survey

22. Survey the exact worksite bounaries to provide baseline information for assessing possible settlement. Provide information to SOPA CADD unit in electronic format within one week of completion of works

Installation of poles, piezometers, other structures

- 23. Fill the void around the structure with a cement/bentonite (1:9 mix) slurry mix to the surface
- 24. Pump the slurry under pressure to avoid bridging
- 25. If the structure is hollow, fill it with a cement/bentonite slurry to the ground surface, or vent it, to avoid gas build-up (excluding piezometers)

Decomissioning/removal of structures

- 26. Fully remove the structure from the ground where possible
- 27. Fill the void with a cement/bentonite (1:9 mix) slurry mix (or a compacted validated clay) to 500mm from the surface
- 28. Restore and compact the clay capping, topsoil & landscaping
- 29. If it is not possible to remove the structure from the ground: cut it 500mm below the ground surface. If hollow, fill it with a cement/bentonite (1:9 mix) slurry mix. To avoid bridging, pump slurry under pressure.

9 MANAGEMENT OF UNEXPECTED WASTE

Comprehensive soil testing was conducted across the whole of Sydney Olympic Park in the 1990s on a grid-pattern basis, to identify areas requiring remediation (Coffey 1992). It is possible that some small patches of waste were undetected by this survey; in other cases, waste was left in situ (eg adjacent to creeklines, under Hill Road), and infrastructure such as cut-off walls and leachate drains installed to collect and contain leachate from this waste.

Waste may be potentially be found during excavation of areas of Sydney Olympic Park that are not mapped as remediated lands, posing risks to contractors, public and the environment.

The following procedure applies:

- 1. Restrict public access to the area.
- 2. Report the location and nature of the waste to SOPA for further investigation

- 3. Assess occupational, public and environmental risks. Particularly consider potential explosive or toxic gases, toxic chemicals, and buried unexploded ordnance.
- Induct contractors on risks and procedures, and provide personal protection equipment as required. Avoid naked flames, sparks, and no eating or drinking.
- 5. Place excavated material back into the trench or remove it from the site. Any material to be removed from site must be placed in labelled skip bins or similar and tested for subsequent disposal to a licensed facility.

10 OCCUPATIONAL HEALTH & SAFETY

All persons undertaking works at the Park are required to hold a SOPA Work Permit; applicants must provide documents including Safe Work Method Statements in support of Permit applications. Issue of a SOPA Work Permit does not mean that SOPA has 'approved' the content of an applicant's Safe Work Method Statement - applicants are responsible for ensuring that their Safe Work Method Statements effectively address potential hazards, and comply with legislative requirements.

The remediated landfills and associated leachate collection and transfer infrastructure present potential hazards to persons directly involved in remediation system management and maintenance, and also to persons undertaking unrelated works on or near these lands.

Potential hazards likely to be associated with typical management activities on the landfill systems are identified in Table 10.1. These hazards were identified from review of landfill system design and environmental monitoring results, and an earlier risk review commissioned by the Authority (*Occupational Health and Safety Plan for Remediated landfill Areas at Homebush Bay* (Dr Garry Smith, Smith Environmental 2001). Work Permit applicants should consider these hazards in developing project-specific Safe Work Method Statements.

	Activity	Potential hazard*
1	Soil disturbance below 0.5m	Dermal chemical contact
	eg digging, earthmoving, construction, borehole drilling	Asbestos contact
	Note: Excavations below 0.5m require DECC approval	Vapour chemical contact
		Explosive gases
		Unexploded ordance (within Woo-la-ra landfill and the NNR
2	Leachate collection information to the	acid sulphate cells)
2	storage tank / niezometers / sumps / tar nit / sil sagasta	Dermal chemical contact
	Equipspection maintenance bydraulic electical	Vapour chemical contact
	eg inspection, maintenance, nyuraunc, electical	Low oxygen levels
		Explosive gases
2	Contraction of the second	Fall, entrapment, drowning
3	Construction / welding / drilling	Vapour chemical contact
		Explosive gases
	6 H	Grassfire
4	Subterranean services – installation and maintenance	Dermal chemical contact
	Eg plumbing / drainage / pipework / irrigation / electrical /	Vapour chemical contact
	teleconnulations / gas	Low oxygen levels
-		Explosive gases
5	Landscaping	Dermal chemical contact with seeps or overlows
	Management activities no deeper than 0.5m	Vapour chemical contact, particularly within fenced piezometer and pump pit enclosures
		Explosive gases (hot tools, smoking)
		Grassfire (hot tools, smoking)
6	Gas extraction system servicing	Vapour chemical contact
	At Golf Driving range – amenities building and P3 Carpark	Explosive gases
7	Pond maintenance	Dermal chemical contact – all ponds (note DNAPL in northern
	Haslams Reach, Bicentennial Park evaporation ponds, Wilson	end of Wilson Park Treatment pond 1)
	Park treatment ponds	Dermal algae contact
		Vapour chemical contact
		Explosive gases
0	Cite	Fall, entrapment, drowning
8	Site monitoring	Dermal chemical contact with seeps or spills
	eg inspection, sampling, ecological survey; particularly within	Vapour chemical contact
	portas, renced plezometer and pump pit enclosures	Explosive gases

Table 10.1 Potential landfill-related occupational health and safety hazards

*see section 3 of the SOPA Remediated Lands Management Plan for information on individual landfill characteristics including: waste type, leachate composition, surface gas and subsurface accumulated gas monitoring results

Appendix C: Bore Logs

PROJECT NUMBER 2207292 PROJECT NAME FDC GWS Giants LFGRA CLIENT FDC GWS Giants ADDRESS 1 Olympic Boulevard, Olympic Park NSW DRILLING DATE 17/05/2023 DRILLING METHOD HA TOTAL DEPTH 2.0 mbgl DIAMETER 150mm CASING 0-1 mbgl SCREEN 1-2 mbgl COORDINATES -COORD SYS -COMPLETION -SURFACE ELEVATION -WELL TOC

COMMENTS					L (LOGGED BY DT Checked by GB		
Material Description	Graphic Log	Drilling Method	Bore Diagram	Depth (m)	PID (ppm)	Samples	Analysed	Additional Observations
TOPSOIL: Grass.		HA		0 1				
FILL: Sandy Silt, dark brown, loose, poorly sorted, fine-medium grained, moist.				0.2	0.0	/LFG01_0.5		
Increasing clay content and cohesion.				0.6	0.0			
FILL: Sandy Clay, dark grey to black, poorly sorted, soft, fine-medium grained, low-medium plasticity, slightly moist.	2000 2000 2000 2000 2000 2000 2000 200			0.8	0.0	/LFG01_1.0		
Decreasing sand content.				- 1.1 - 1.2 - 1.3 - 1.4				
				1.5	0.0	/LFG01_1.5		
	00000000000000000000000000000000000000			2	0.0	/LFG01_2.0		
EOH at 2.0 mbgl.				2.1				

PROJECT NUMBER 2207292 PROJECT NAME FDC GWS Giants LFGRA CLIENT FDC GWS Giants ADDRESS 1 Olympic Boulevard, Olympic Park NSW DRILLING DATE 17/05/2023 DRILLING METHOD HA TOTAL DEPTH 2.0 mbgl DIAMETER 150mm CASING 0-1 mbgl SCREEN 1-1.5 mbgl COORDINATES -COORD SYS -COMPLETION -SURFACE ELEVATION -WELL TOC

COMMENTS					l (L ogged by DT Checked by GB		
Material Description	Graphic Log	Drilling Method	Bore Diagram	Depth (m)	PID (ppm)	Samples	Analysed	Additional Observations
TOPSOIL: Grass.		HA						
FILL: Sandy Gravel, yellow/brown, loose, angular grains, dark brown silts.				0.1	0.0	/LFG02_0.5		
Appearing clays, increasing cohesion.				0.7	0.0	/LFG02_1.0		
FILL: Clayey Silt, wood fragments, sand and gravel, dark red/brown colour, low plasticity.				- 1.1 - 1.2 - 1.3 - 1.4	0.0	/LFG02 1.5		
FILL: Clay, minor sand, red/brown, firm, high plasticity.	2000 2000 2000 2000 2000 2000 2000 200			- 1.5	0.0	/		Minor
FILL: Silty Clay, fragments of wood, glass and metal, black, soft, medium-high plasticity, present.				- 1.8	0.0	/LFG02_2.0		Minor decomposition odour.
EOH at 2.0 mbgl.								
				2.1				
				2.2				
				- 2.4				

PROJECT NUMBER 2207292 PROJECT NAME FDC GWS Giants LFGRA CLIENT FDC GWS Giants ADDRESS 1 Olympic Boulevard, Olympic Park NSW

DRILLING DATE 17/05/2023

DRILLING METHOD HA/SA TOTAL DEPTH 5.0 mbgl DIAMETER 150mm CASING 0 - 2.9 mbgl SCREEN 2.9 - 4.9 mbgl COORDINATES -COORD SYS -COMPLETION -SURFACE ELEVATION -WELL TOC

COMMENTS					l	LOGGED BY DT Checked by GB		
Material Description	Graphic Log	Drilling Method	Bore Diagram	Depth (m)	PID (ppm)	Samples	Analysed	Additional Observations
TOPSOIL: Grass. FILL: Silty Sand, grass roots, dark brown, poortly sorted, fine grained. FILL: Gravels <30mm, angular, hard and compact, concrete fragments, silts and sands. FILL: Sandy Silt, dark brown, poorly sorted, hard and compacted, fine-medium grained, dry. /FILL: Clay, minor coarse sands, dark grey, soft, medium-high plasticity. Increasing sand content.	0.014340.014340.014340.014340.014340.014340.014340.014340.014340.014340.014340.014340.014340.014340.014340.0143 2.222322.2222322.222232.22232.22232.22232.22232.22232.22232.22232.22232.22232.22232.22232.22232.22232.22232.223 2.22232242424242424242424242424242424242	HA		0.2 0.4 0.6 0.8 1 1.2	0.0	/LFG03_0.5		
FILL: Clay, red/brown with yellow mottling, soft, medium-high plasticity.		SA		- 1.6 - 1.8 - 2 - 2.2 - 2.2 - 2.4 - 2.6 - 2.8 - 3	0.0	/LFG03_1.5		
FILL: Sandy Clay, medium grained and poorly sorted sands, white/cream, soft, low-medium plasticity. FILL: Silty Clay, fragments of wood, glass and metal, black, soft, medium-high plasticity.				3.2 3.4 3.6 3.8 4 4.2 4.4	0.0	/LFG03_3.4 \ /LFG03_4.0 \		Minor decomposition odour. Strong decomposition odour.
EOH at 5.0 mbgl.				4.6 4.8 5 5.2 5.4	0.0	/LFG03_5.0		

PROJECT NUMBER 2207292 PROJECT NAME FDC GWS Giants LFGRA CLIENT FDC GWS Giants ADDRESS 1 Olympic Boulevard, Olympic Park NSW DRILLING DATE 17/05/2023 DRILLING METHOD HA/SA TOTAL DEPTH 6.0 mbgl DIAMETER 150mm CASING 0 - 4 mbgl SCREEN 4 - 6 mbgl COORDINATES -COORD SYS -COMPLETION -SURFACE ELEVATION -WELL TOC

COMMENTS	LOGGED BY DT Checked by GB							
Material Description	Graphic Log	Drilling Method	Bore Diagram	Depth (m)	PID (ppm)	Samples	Analysed	Additional Observations
TOPSOIL: Grass. FILL: Sandy Silt, fine-medium grained sands, minor	{	HA		-				
gravels <5mm, light brown, loose, poorly sorted.				0.5	0.0	/LFG04_0.5		
Very hard layer. FILL: Clayey Silt, light brown with red/yellow mottling, soft, low plasticity.	2000 2000 2000 2000 2000 2000 2000 200			- 1	0.0	/LFG04_1.0		
				1.5	0.0	/LFG04_1.5		
FILL: Clayey Silt, waste fragments black, soft, medium-high plasticity.		SA		2	0.0	/LFG04_2.0		Some decomposition odour.
Waste fragments visible. FILL: Clay, brick, glass and wood fragments, dark grey with significant red/brown mottling, soft, medium-high plasticity.				- 2.5	0.0	/LFG04_3.0 \		
				- 4	0.0	/LFG04_4.0		
FILL: Silty Clay, wood, glass and metal fragments, black, soft, medium-high plasticity.				- 4.5 - 5 - 5.5	0.0	/LFG04_5.0		Strong decomposition odour.
				6	0.0	/LFG04_6.0		
EOH at 6.0 mbgl.				0				

Soil Bore SB01

PROJECT NUMBER 2207292	DRIL
PROJECT NAME FDC GWS Giants LFGRA	TOTA
CLIENT FDC GWS Giants	DIAM
ADDRESS 1 Olympic Boulevard, Olympic Park NSW	CASI SCRE
DRILLING DATE 17/05/2023	

DRILLING METHOD HA TOTAL DEPTH 1.3 mbgl DIAMETER CASING SCREEN COORDINATES -COORD SYS -COMPLETION -SURFACE ELEVATION -WELL TOC

					(LOGGED BY DT Checked by GB		
Material Description	Graphic Log	Drilling Method	Bore Diagram	Depth (m)	PID (ppm)	Samples	Analysed	Additional Observations
TOPSOIL: Grass. FILL: Silty Sand, grass roots, dark brown, poorly sorted, fine-medium grained.		HA	+	 0.1				
				- 0.2 - 0.3				
				- 0.4 0.5	0.0	/SB01_0.5		
FILL: Sandy, gravelly Clay, gravels <5mm, some silts, red brown, firm, low plasticity.				- 0.7 - - - - - 0.8				
					0.0	/SB01_1.0 \		
Larger road base-type gravels.				- 1.1 - 1.1 				
	22252 22252 22252 25225 25225 25255 255555 255555 255555 255555 255555 255555 2555555			- - - - - 1.3	0.0	/SB01_1.3		
EOH at 1.3 mbgl: Refusal on hard layer.				- - - - 1.4				
				- - - - 1.5				
				 1.6				
				 1.7				
				- 1.8				
				- - - 1.9				
fine-medium grained. FILL: Sandy, gravelly Clay, gravels <5mm, some silts, red brown, firm, low plasticity. Larger road base-type gravels. EOH at 1.3 mbgl: Refusal on hard layer.				0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.3 1.4 1.5 1.4 1.5 1.6 1.7 1.8 1.8	0.0	/SB01_0.5		

Appendix D: Equipment Calibration Certificates

Equipment Calibration Form RKI GX-6000 PID

UNIT IDENTIFICATION				
Model Number	GX-6000			
Serial Number	51M0139203-4RN			
Unit Type	RKI GX-6000 PID/LEL			

INSEPCTION RECORD / CONDITION REPORT							
Inlet Flow Adequate/Clear	⊠ Pump						
Alarm Limite	PID	High	100 ppm	Low	5 ppm		
	LEL	High	10%	Low	5%		

CALIBRATION DETAILS							
Sensor	Span Gas	Value	Reading	Gas Bottle No.			
PID	Isobutylene	100 ppm	100 ppm	10009-6			
FID	Air	0 ppm	0 ppm	10003-0			
LEL	CH ₄	50%	50%	10011-3			
Calibration Successful	\boxtimes						

Calibrated by:		Declan Tennent
Calibration date:	13/05/2023	
Next calibration due:	20/05/2023	

Gas Calibration Certificate

Instrument	GA5000
Serial No.	G508343
Sensors	CH4, CO2, O2, CO, H2S

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	1	
	Capacity	1	
	Recharge OK?	1	
Switch/keypad	Operation	✓	
Display	Intensity	¥	
	Operation (segments)	✓	
Grill Filter	Condition	1	
	Seal	1	
Pump	Operation	1	
	Filter	1	
	Flow	1	
	Valves, Diaphragm	1	
PCB	Condition	4	
Connectors	Condition	1	
Sensor	02	1	
	CH4	1	
	CO2	1	
	CO	1	
	H2S	1	
Alarms	Beeper		
	Settings	1	
Software	Version		
Datalogger	Operation	and the second second second	
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

24/05/2023

Diffusion mode	Aspirated mode				
Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
02		20.9% Vol O2	-	Fresh Air	20.9% Vol O2
CH4		60% Vol CH4	NATA	SY483	60% Vol CH4
CO2		40% Vol CO2	NATA	SY483	40% Vol CO2
CO		103ppm CO	NATA	SY397	103ppm CO
H2S		25ppm H2S	NATA	SY397	25ppm H2S
CH4		2.5% Vol CH4	NATA	SY397	2.5% Vol CH4

Calibrated by:

Alex Buist

Calibration date:

Next calibration due: 20/11/2023

24/05/2023

Gas Calibration Certificate

InstrumentGA5000Serial No.G508345SensorsCH4, O2, CO, H2S

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	1	
	Capacity	1	
	Recharge OK?	1	
Switch/keypad	Operation	1	
Display	Intensity	· · ·	
	Operation (segments)	1	
Grill Filter	Condition	1	
	Seal	1	
Pump	Operation	1	
·	Filter	1	
	Flow	1	
	Valves, Diaphragm	1	
PCB	Condition	1	
Connectors	Condition	1	
Sensor	02	1	
	CH4	1	
	CO2	1	
	H2S	1	
	CO	1	
Alarms	Beeper	1	
	Settings	×	•
Software	Version		
Datalogger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode	Aspirated mode				. And the second
Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
02		20.9% O2		Fresh Air	20.8% O2
H2S		24ppm H2S	NATA	SY396	25ppm H2S
CO		100ppm CO	NATA	SY396	100ppm CO
CH4		2.5% CH4	NATA	SY396	2.5%CH4
CH4		60% CH4	NATA	SY443	60% CH4
CO2		40% CO2	NATA	SY443	40% CO2

Calibrated By:

Izack Muhlbock

Calibration date: 19/06/2023

Next calibration due: 16/12/2023

CERTIFICATION **OF CALIBRATION**

Issued by: QED Environmental Systems Ltd.

Calibration certificate number	19255 H-09418	

Instrument Serial Number 19255 Laser One

Description of the calibration procedure:

The calibration is verified with certified gas bottle. The maximum error of the instrument as specified in the datasheet.

Gas verification from 0-1000ppm CH4

Full scale (ppm)	Gas concentration (ppm)	Response 1 (ppm)	Response 2 (ppm)	Response 3 (ppm)	Average response (ppm)	Maximum error (ppm)	Maximum error (% F.s.)	Maximum error %
1000	0.0	0	0	0	0.00	0.00	0.00	0.00
1000	2.91	3	3	3	3.00	0.09	0.01	0.01
1000	10.3	10.3	10.3	10.3	10.30	0.00	0.00	0.00
1000	101.0	101	101	101	101.00	0.00	0.00	0.00
1000	1004	1000	1000	1000	1000.00	4.00	0.40	0.40
						Uncertainty	0.40	%
						Max % error	0.40	% FS

Max % error 0.40

Gas verification from 0-100% vol CH4

Full scale (%vol)	Gas concentration (%vol)	Response 1 (%vol)	Response 2 (%vol)	Response 3 (%vol)	Average response (%vol)	Maximum error (%vol)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2 20	2.20	2,20	2.20	2.20	0.00	0.00	0.00
100.00	5.00	5.00	5.00	5.00	5.00	0.00	0.00	0.00
100.00	15.00	15.00	15.00	15.00	15.00	0.00	0.00	0.00
100.00	50.00	49.90	49.90	49.90	49,90	0.10	0.10	0.10
100.00	100.00	100.00	100.00	• 100.00	100.00	0.00	0.00	0.00

Uncertainty 0.10 Max % error 0.10

Gas verification from

0-100% CH4 LEL (0-4.4% VOL)

Full scale (%vol)	Gas concentration (LEL%)	Response 1 (LEL%)	Response 2 (LEL%)	Response 3 (LEL%)	Average response (%vol)	Maximum error (LEL%)	Maximum error (% F.s.)	Maximum error %
100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	2.00	2.00	2.00	2.00	2.00	0.00	0.00	0.00
100.00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00

Uncertainty	%			
Max % error	0.00	% FS		

% FS

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Page 1 of 2 Registered in England and Wales 1898734
CERTIFICATION OF CALIBRATION

Issued by: QED Environmental Systems Ltd.

Environmental conditions during calibration

Temp.	18.5	С
Pressure	977	mBar

Gas bottles used for calibration

Gas	Cylinder number	Expiry date	Gas
N2	S1261680T	16/05/2024	N2
3 ppm	292675	17/08/2027	CH4
10 ppm	119779SG	11/04/2024	CH4
100 ppm	S1729157	08/03/2028	CH4
1000 ppm	S1147710R	03/01/2028	CH4
1.0% Vol	S1198415S	10/04/2024	CH4
2.2% vol	1713254	13/12/2027	CH4
5.0% vol	217147	03/12/2024	CH4
15% vol	269223	07/11/2023	CH4
50% vol	189051SG	23/02/2024	CH4
100% vol	S1182097S	15/11/2025	CH4

Calibration results: Pass

Next scheduled calibration: 03/04/2024

Calibration date: 03/04/2023

Issued by: Keeley Knight

KA

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

QED Environmental Systems Ltd. Cyan Park - Unit 3, Jimmy Hill Way, Coventry, CV2 4QP, UNITED KINGDOM Registered in England and Wales 1898734 Page 2 of 2

Gas Calibration Certificate

Instrument	GA5000
Serial No.	G508342
Sensors	CH4, CO2, O2, CO, H23

	Tost	Pass	Comments
Item	Test	1400	
Battery	Charge Condition	1	
	Fuses		
	Capacity	*	States and the second
	Recharge OK?		
Switch/keypad	, Operation		
Diaplay	Intensity		
Display	Operation (segments)	-	
0 111 53444	Condition	-	
Grill Filter	Seal	✓	
	Operation	✓	
Pump		1	
	Filter	1	
	Flow	1	
	Valves, Diaphragm	1	
PCB	Condition		
Connectors	Condition		
Sensor	02		
	CH4		
The second se	CO2	1	
	CO		
	H2S		
Alarms	Beeper		
	Settings		
Software	Version		
Datalogger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode	Aspirated mode				L. L. L. L. Danding
Sensor	Serial no	Calibration gas and	Certified	Gas bottle No	Instrument Reading
		20.9% 02	A REAL PROPERTY	Fresh Air	20.9% O2
02		24ppm H2S	NATA	SY396	25ppm H2S
H2S		103ppm CO	NATA	SY396	103ppm CO
CO		2.5% CH4	NATA	SY396	2.5% CH4
CH4		60% CH4	NATA	SY483	60% CH4
CH4		40% CO2	NATA	SY483	40% CO2
CO2		40% 002	IN ATA		

13/06/23
10/12/2023

Jesse Stenroos

ThermoFisher SCIENTIFIC	Portable Gas Detector Calibration Report Service Call: SV2305010042
Thermo Fisher Scientific Australia Pty Ltd ABN 52 058 390 917 5 Caribbean Drive Scoresby VIC 3179	Customer: Air Met Scientific Address: 7 – 11 Ceylon Street Nunawading 3131
Phone: 1 300 736 767 Fax: 03 9763 1169	Attention: Mee Lan Liew

a sure

.

Item	Test	Fail	Pass	Comments	Qty	Part code	List	Disc.
Battery	NiCd, NiMH, Dry cell, Lead acid, Li Ion							
and the second de	Charger, Power supply	Non-incores	Asses,	And a state of the second	-			-
Pump	Flow		1					

Filter	Filter, fittings etc	V		Renev	wed inline	filters		2	Mis	C		
Alarms	Audible, visual, external											
	Alarm code											
Display	Operation											
Switches	Operation		1,/	1								
PCB	Operation		11									
Connectors	Condition		V	,								
Firmware	Version		V									
Data Logger	Operation											
Case	Condition		V									
Sensors	Oxygen Lo/Hi DXM		1	S/n:								
	Toxic 1 Inst/STEL/TWA H33		i	S/n:								
	Toxic 2 Inst/STEL/TWA		~	S/n:								
	Toxic 3 Inst/STEL/TWA CO2			/ S/n:								
	LEL Alarm 1, Alarm 2 CH4		V	S/n:								
	% VOL, PID, IR, other Alarm 1, Alarm 2			S/n:								
ther tests												
	Engineers report				Date	Start	Finish			Parts total		
alibrated and tested unit			1		A A State	La	bour					
lenewed inli	newed inline filters						Ca	libratio	on Cal 5			
								Tra	avel			
								Fre	eight			
Aodel: Geote	ech GA5000 S/N	N: G5	08342	2				То	tal			

Calibration Certificate

Gaber #

				All sense	ors have been Zer	oed prior to calibration.	Head sp	an tested	to 20% of SPA	N gas
Sensor	Туре	Serial no/	D/C	Span Gas	Conc.	Traceability	CF	E	Before	After cal
		Dale coue				Lot no#		Span	Head Span	SPAN
Оху	AIR			AIR	20.9%	AIR		-	~	20.9%
Tox 1	H2S			H2S	25ppm	1510491		-		25ppm
Tox 2	CO			CO	100ppm	1510491				100ppm
Tox 3	CO2			CO2	40%vol	402360911-24		-		40%vol
Exp	Flam			CH4	60%vol	402260011 24				60%/201

Dec 00

Calibrated/Repaired by: Stephen Hicks Calibration/Repair date:

Calibration/Repair date: 22/05/2023 Next due: 22/05/2024

.

Appendix E: Laboratory Analytical Reports and COC Documentation

Approved Date 11/07/2022	om Paje 1 of 1	-			ENEM (74-0)	Γ
					Black trolling	
				ENCE):	CORRESPONDENCE (DATE, INITIALS - DETAILS OF CORRESPOND	COF
		2	힉			
					٥٦ ا	σı
				4	4	4
			5	4	3 (FG1 1.0	ω
			5		2 SBI 1-2	N
			5	5 N/20/ L1	1 S-0 1/4 S	
	□ ALS COMPASS		1			
	COC EMAILED to be emailed	NUMBER C	MATR	DATE	SAMPLE ID	
9	□ BIOSECURITY	F CON	X		AB ID	ABID
	□ MICRO OTHER INFORMATION:					
Telephone : + 81-2-8784 8655	ADDITIONAL INFORMATION / COMMENTS	२ऽ			SAMPLE DETAILS	
	$RE 8.2^{c}C - 1Q$	PERATU	TEM	er: Jach	datertime received: $3/05/13/730$ client services notified	DAT
	.8.	SAMPLE	# OF		SAMPLES RECEIVED BY: JGC	SAM
	RS:	Y NUMBE	ESK		SAMPLER NUMBER:	SAM
	ales: Laval	E OF ESK	TYPI		SAMPLER NAME: AM	SAM
ES2316686	SECURITY SEAL: Y N (N/A)	ESKIES:	# OF		CONTACT NUMBER: OLY 560 177	CON
Work Order Reference		#	AWE	Nikov	CONTACT NAME: JOY POIRMANSCHU. / ALEX 1	CON
Environmental Division Sydnev		NOTE #:	CON		PROJECT / QUOTE: 7207292	PRO
	CLIVENT	RIER:	CAR		CLIENT: AVG ENVIRONMENTAL	CLIE
	VED WITHOUT COC	1	C	ES RE	SAMPL	
						7

ARC ENVIRONMENT

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES2316686				
Client Contact Address	ARC ENVIRONMENTAL MR JAY PARMANSCHE Suite 103, 7 Jeffcott Street WEST MELBOURNE	Laboratory: Environmental Division SydneyContact: Katie DavisAddress: 277-289 Woodpark Road Smith NSW Australia 2164			
E-mail Telephone Facsimile	: jay@arcenvironmental.com.au : 03 8383 1950 :	E-mail Telephone Facsimile	: katie.davis : +61-2-878 : +61-2-878	@alsglobal.com 4 8555 4 8500	
Project Order number	:	Page Quote number	: 1 of 3 : EM2017AI Primary w	RCENV0001 (MEBQ/216/21 ork)	
C-O-C number Site Sampler	: :	QC Level	: NEPM 201	13 B3 & ALS QC Standard	
Dates Date Samples Received Client Requested Due Date	: 18-May-2023 19:30 : 29-May-2023	Issue Date Scheduled Reportir	ng Date	: 23-May-2023 [:] 29-May-2023	
Delivery Details Mode of Delivery No. of coolers/boxes Receipt Detail	: Client Drop Off : 1 :	Security Seal Temperature No. of samples rec	eived / analysed	: Not Available : 8.2' C - Ice present : 30 / 19	

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample QC2 forwarded to Eurofins for analysis.
- 23/05/23: This is an updated SRN which indicates Asbestos for samples 3, 6, 17, 19, 22-26, P-7/4 suite for samples 6, 18 AND the samples with prefix LFG on the jars have been changed.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The laboratory will process these samples unless instructions are received from
 you indicating you do not wish to proceed. The absence of this summary table indicates that all
 samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time

SOIL - P- 7/4 - Short Suite NSW DECCW Waste Classification (SCC) Asbestos Identification in Soils metals/TRH/BTEXN/PAH Vo analysis requested oluble Major Anions component SOIL - EA055-103 **Noisture Content** EA200G ED040S On Hold) SOII Matrix: SOIL **SOIL - EA002** S-26 pH (1:5) Sampling date / Sample ID Laboratory sample SOIL -OIL ol ID time ES2316686-001 LFG3 0.5 ✓ 18-May-2023 00:00 ✓ √ ~ 18-May-2023 00:00 √ ES2316686-002 LFG3 1.0 ✓ ✓ ES2316686-003 18-May-2023 00:00 LFG3 1.5 ✓ ~ √ ES2316686-004 18-May-2023 00:00 LFG3 2.0 √ ES2316686-005 18-May-2023 00:00 LFG3 3.0 ✓ ✓ √ ES2316686-006 18-May-2023 00:00 LFG3 3.4 ~ ES2316686-007 18-May-2023 00:00 LFG3 4.0 \checkmark ~ \checkmark ~ √ ES2316686-008 18-May-2023 00:00 LFG3 5.0 ✓ √ ✓ ES2316686-009 18-May-2023 00:00 LFG4 0.5 1 ES2316686-010 18-May-2023 00:00 LFG4 1.0 ~ ES2316686-011 18-May-2023 00:00 LFG4 1.5 √ √ ✓ ES2316686-012 18-May-2023 00:00 LFG4 2.0 ✓ √ ES2316686-013 18-May-2023 00:00 1 LFG4 3.0 ✓ ES2316686-014 18-May-2023 00:00 LFG4 4.0 ES2316686-015 18-May-2023 00:00 ✓ ~ ✓ ✓ LFG4 5.0 ✓ ES2316686-016 18-May-2023 00:00 LFG4 6.0 ✓ ✓ ✓ ✓ ✓ ES2316686-017 18-May-2023 00:00 LFG1 0.5 ES2316686-018 18-May-2023 00:00 LFG1 1.0 √ √ ES2316686-019 ✓ 1 √ ✓ √ 18-May-2023 00:00 LFG1 1.5 ES2316686-020 18-May-2023 00:00 LFG1 2.0 1 ✓ ~ ✓ ✓ ES2316686-021 18-May-2023 00:00 LFG2 0.5 ES2316686-022 18-May-2023 00:00 LFG2 1.0 ~ ✓ 1 1 ✓ √ ES2316686-023 18-May-2023 00:00 LFG2 1.5 ES2316686-024 18-May-2023 00:00 LFG2 2.0 ✓ ES2316686-025 ✓ ~ ~ ✓ ✓ 18-May-2023 00:00 SB1 0.5 ✓ ES2316686-026 ✓ ✓ √ 18-May-2023 00:00 SB1 1 0 ~ √ ES2316686-027 18-May-2023 00:00 SB1 1.3 ES2316686-029 √ √ 18-May-2023 00:00 QC1

Matrix: SOIL Laboratory sample ID ES2316686-006	Sampling date / time 18-May-2023 00:00	Sample ID LFG3 3.4	SOIL - EA200 Asbestos Identification in Soils -	 SOIL - EP231X (solids) PFAS - Full Suite (28 analytes) 	SOIL - S-18 TRH/CE-CO/RTEXN
ES2316686-012	18-May-2023 00:00	LFG4 2.0	 ✓ 		
ES2316686-015	18-May-2023 00:00	LFG4 5.0	✓	✓	
ES2316686-028	08-May-2023 00:00	TRB1 TRIP BLANK			✓
Matrix: WATER			4-04 N		
Laboratory sample	Sampling date / time	Sample ID	WATER - W TRH/BTEXN		
ES2316686-030	18-May-2023 00:00	RB1	✓		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ESDAT REPORTING

- EDI Format - ESDAT (ESDAT)	Email	arcenvironmental@esdat.com.au
 Electronic SRN for ESdat (ESRN_ESDAT) 	Email	arcenvironmental@esdat.com.au
JAY PARMANSCHE		
- *AU Certificate of Analysis - NATA (COA)	Email	jay@arcenvironmental.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	jay@arcenvironmental.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jay@arcenvironmental.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jay@arcenvironmental.com.au
- A4 - AU Tax Invoice (INV)	Email	jay@arcenvironmental.com.au
- Chain of Custody (CoC) (COC)	Email	jay@arcenvironmental.com.au
- EDI Format - ENMRG (ENMRG)	Email	jay@arcenvironmental.com.au
- EDI Format - ESDAT (ESDAT)	Email	jay@arcenvironmental.com.au
Inter Laboratory Teating		

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils (SOIL) EK040T: Fluoride Total

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: ES2316686	Page	: 1 of 14		
Client		Laboratory	: Environmental Division Sydney		
Contact	: MR JAY PARMANSCHE	Telephone	: +61-2-8784 8555		
Project	:	Date Samples Received	: 18-May-2023		
Site	:	Issue Date	: 30-May-2023		
Sampler	:	No. of samples received	: 30		
Order number	:	No. of samples analysed	: 19		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Laboratory Control outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2317303018	Anonymous	Lead	7439-92-1	29.2 %	0% - 20%	RPD exceeds LOR based limits
Laboratory Control Spike (LCS) Recoveries							
EP075(SIM)A: Phenolic Compounds	QC-5074623-002		Phenol	108-95-2	58.5 %	71.0-125%	Recovery less than lower control limit
EP075(SIM)A: Phenolic Compounds	QC-5074623-002		2.4.6-Trichlorophenol	88-06-2	147 %	54.0-114%	Recovery greater than upper control
							limit
EP075(SIM)A: Phenolic Compounds	QC-5074623-002		2.4.5-Trichlorophenol	95-95-4	122 %	60.0-114%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-5074623-002		Anthracene	120-12-7	67.7 %	77.0-127%	Recovery less than lower control limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-5074623-002		Benzo(g.h.i)perylene	191-24-2	62.7 %	63.0-121%	Recovery less than lower control limit

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA002: pH 1:5 (Soils)							
Soil Glass Jar - Unpreserved							
LFG3 0.5,	LFG3 1.5,				25-May-2023	24-May-2023	1
LFG3 4.0,	LFG4 0.5,						
LFG4 2.0,	LFG4 5.0,						
LFG1 0.5,	LFG1 1.5,						
LFG2 0.5,	LFG2 1.5,						
SB1 0.5,	SB1 1.0						
EP080/071: Total Petroleum Hydrocarbo	ns						
Soil Glass Jar - Unpreserved							
TRB1 - TRIP BLANK					23-May-2023	22-May-2023	1
EP080/071: Total Recoverable Hydrocart	bons - NEPM 2013 Fractions						
Soil Glass Jar - Unpreserved							
TRB1 - TRIP BLANK					23-May-2023	22-May-2023	1
EP080: BTEXN							
Soil Glass Jar - Unpreserved							
TRB1 - TRIP BLANK					23-May-2023	22-May-2023	1

Outliers : Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
	1				
Laboratory Duplicates (DUP)					
Major Anions - Soluble	1	12	8.33	10.00	NEPM 2013 B3 & ALS QC Standard

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
	0				
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	0	6	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	6	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:	× = Holding	time breach ;	✓ =	Within	holding	time.
-------------	-------------	---------------	-----	--------	---------	-------

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002: pH 1:5 (Soils)								
Soil Glass Jar - Unpreserved (EA00	2)							
LFG3 0.5,	LFG3 1.5,	18-May-2023	24-May-2023	25-May-2023	1	25-May-2023	24-May-2023	*
LFG3 4.0,	LFG4 0.5,							
LFG4 2.0,	LFG4 5.0,							
LFG1 0.5,	LFG1 1.5,							
LFG2 0.5,	LFG2 1.5,							
SB1 0.5,	SB1 1.0							
EA055: Moisture Content (Dried @	105-110°C)							
Soil Glass Jar - Unpreserved (EA05	5)							
LFG3 0.5,	LFG3 1.5,	18-May-2023				24-May-2023	01-Jun-2023	✓
LFG3 3.4,	LFG3 4.0,							
LFG4 0.5,	LFG4 2.0,							
LFG4 5.0,	LFG1 0.5,							
LFG1 1.0,	LFG1 1.5,							
LFG2 0.5,	LFG2 1.5,							
SB1 0.5,	SB1 1.0							
Soil Glass Jar - Unpreserved (EA05	5)							
QC1		18-May-2023				25-May-2023	01-Jun-2023	\checkmark

Page	: 4 of 14
Work Order	: ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

Matrix: SOIL					Evaluation	i: × = Holding time	breach ; ✓ = Withi	in holding time
Method			E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA200: AS 4964 - 2004 Identification	n of Asbestos in Soils							
Snap Lock Bag (EA200)							44.54 0000	
LFG4 2.0,	LFG4 5.0	18-May-2023				24-May-2023	14-Nov-2023	 ✓
Snap Lock Bag - ACM/Asbestos Gra	ab Bag (EA200)	49 May 2022				24 May 2022	14 Nov 2022	
LFG3 1.5,		18-May-2023				24-1viay-2023	14-1100-2023	✓
LFG1 0.5,	LFG11.5,							
LFG2 1.0,	LFG2 1.5,							
LFG2 2.0,	SB1 0.5,							
SB1 1.0								
ED040S: Soluble Major Anions							I	
Soil Glass Jar - Unpreserved (ED04	0S)	19 May 2022	24 May 2022	15 Jun 2022		25 May 2022	21 Jun 2022	
LFG3 0.5,	LFG3 1.5,	10-Way-2023	24-11/1dy-2023	15-Juli-2025	~	25-1Vlay-2025	21-Jun-2023	✓
LFG3 4.0,	LFG4 0.5,							
LFG4 2.0,	LFG4 5.0,							
LFG1 0.5,	LFG1 1.5,							
LFG2 0.5,	LFG2 1.5,							
SB1 0.5,	SB1 1.0							
EG005(ED093)T: Total Metals by ICF	P-AES						1	
Soil Glass Jar - Unpreserved (EG00	5T)	40.00		44 Nov 0000			44 Nov 0000	
LFG3 0.5,	LFG3 1.5,	18-May-2023	24-May-2023	14-NOV-2023	~	25-May-2023	14-NOV-2023	✓
LFG3 4.0,	LFG4 0.5,							
LFG4 2.0,	LFG4 5.0,							
LFG1 0.5,	LFG1 1.5,							
LFG2 0.5,	LFG2 1.5,							
SB1 0.5,	SB1 1.0							
Soil Glass Jar - Unpreserved (EG00	5T)							
LFG3 3.4,	LFG1 1.0,	18-May-2023	25-May-2023	14-Nov-2023	~	26-May-2023	14-Nov-2023	✓
QC1								
EG035T: Total Recoverable Mercur	y by FIMS			1			I.	1
Soil Glass Jar - Unpreserved (EG03	5T)	40.00		15 km 0000			45 km 0000	
LFG3 0.5,	LFG3 1.5,	18-May-2023	24-May-2023	15-Jun-2023	~	26-May-2023	15-Jun-2023	✓
LFG3 4.0,	LFG4 0.5,							
LFG4 2.0,	LFG4 5.0,							
LFG1 0.5,	LFG1 1.5,							
LFG2 0.5,	LFG2 1.5,							
SB1 0.5,	SB1 1.0							
Soil Glass Jar - Unpreserved (EG03	5T)							
LFG3 3.4,	LFG1 1.0,	18-May-2023	25-May-2023	15-Jun-2023	~	29-May-2023	15-Jun-2023	 ✓
QC1								
EG048: Hexavalent Chromium (Alka	aline Digest)							
Soil Glass Jar - Unpreserved (EG04	8G)	10.12		45 1			00.1	
LFG3 3.4,	LFG1 1.0	18-May-2023	26-May-2023	15-Jun-2023	✓	26-May-2023	02-Jun-2023	 ✓

Page	5 of 14
Work Order	: ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

Matrix: SOIL						Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding tim	e.
Method			Sample Date	Ex	traction / Preparation			Analysis		٦
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EK026SF: Total CN by Segmented Flow Analyse	ər									
Soil Glass Jar - Unpreserved (EK026SF) LFG3 3.4,	LFG1 1.0		18-May-2023	24-May-2023	01-Jun-2023	1	25-May-2023	07-Jun-2023	4	
EK028SF: Weak Acid Dissociable CN by Segme	nted Flow Analyser									
Soil Glass Jar - Unpreserved (EK028SF) LFG3 3.4,	LFG1 1.0		18-May-2023	24-May-2023	01-Jun-2023	1	25-May-2023	07-Jun-2023	✓	
EK040T: Fluoride Total							-			L
Snap Lock Bag (EK040T) LFG3 3.4,	LFG1 1.0		18-May-2023	29-May-2023	15-Jun-2023	1	30-May-2023	15-Jun-2023	✓	
EP066: Polychlorinated Biphenyls (PCB)										L
Soil Glass Jar - Unpreserved (EP066) LFG3 3.4			18-May-2023	25-May-2023	01-Jun-2023	1	27-May-2023	04-Jul-2023	1	
Soil Glass Jar - Unpreserved (EP066) LFG1 1.0			18-May-2023	25-May-2023	01-Jun-2023	1	29-May-2023	04-Jul-2023	1	
EP068A: Organochlorine Pesticides (OC)										
Soil Glass Jar - Unpreserved (EP068) LFG1 1.0			18-May-2023	25-May-2023	01-Jun-2023	~	27-May-2023	04-Jul-2023	✓	
Soil Glass Jar - Unpreserved (EP068) LFG3 3.4			18-May-2023	25-May-2023	01-Jun-2023	~	29-May-2023	04-Jul-2023	1	
EP068B: Organophosphorus Pesticides (OP)										
Soil Glass Jar - Unpreserved (EP068) LFG1 1.0			18-May-2023	25-May-2023	01-Jun-2023	~	27-May-2023	04-Jul-2023	✓	
Soil Glass Jar - Unpreserved (EP068) LFG3 3.4			18-May-2023	25-May-2023	01-Jun-2023	1	29-May-2023	04-Jul-2023	1	
EP071 SG: Total Recoverable Hydrocarbons - NI	EPM 2013 Fractions - Silica gel clea	nup								L
Soil Glass Jar - Unpreserved (EP071SG-S) LFG3 3.4,	LFG1 1.0		18-May-2023	25-May-2023	01-Jun-2023	~	29-May-2023	04-Jul-2023	1	
EP071 SG-S: Total Petroleum Hydrocarbons in S	Soil - Silica gel cleanup						1			L
Soil Glass Jar - Unpreserved (EP071SG-S) LFG3 3.4,	LFG1 1.0		18-May-2023	25-May-2023	01-Jun-2023	~	29-May-2023	04-Jul-2023	1	
EP074A: Monocyclic Aromatic Hydrocarbons							1			L
Soil Glass Jar - Unpreserved (EP074) LFG3 3.4,	LFG1 1.0		18-May-2023	24-May-2023	25-May-2023	~	25-May-2023	25-May-2023	1	
EP074B: Oxygenated Compounds							1			L
Soil Glass Jar - Unpreserved (EP074) LFG3 3.4,	LFG1 1.0		18-May-2023	24-May-2023	25-May-2023	~	25-May-2023	25-May-2023	1	
EP074E: Halogenated Aliphatic Compounds							1			L
Soil Glass Jar - Unpreserved (EP074) LFG3 3.4,	LFG1 1.0		18-May-2023	24-May-2023	25-May-2023	1	25-May-2023	25-May-2023	1	
EP074F: Halogenated Aromatic Compounds										
Soil Glass Jar - Unpreserved (EP074) LFG3 3.4,	LFG1 1.0		18-May-2023	24-May-2023	25-May-2023	~	25-May-2023	25-May-2023	1	

Page	: 6 of 14
Work Order	: ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time	
Method			Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP074G: Trihalomethanes									
Soil Glass Jar - Unpreserved (EP074) LFG3 3.4,	LFG1 1.0	18-May-2023	24-May-2023	25-May-2023	~	25-May-2023	25-May-2023	1	
EP075(SIM)A: Phenolic Compounds									
Soil Glass Jar - Unpreserved (EP075(SIM)))								
LFG3 3.4		18-May-2023	25-May-2023	01-Jun-2023	1	27-May-2023	04-Jul-2023	 ✓ 	
Soil Glass Jar - Unpreserved (EP075(SIM)									
LFG1 1.0		18-May-2023	25-May-2023	01-Jun-2023	~	29-May-2023	04-Jul-2023	\checkmark	
EP075(SIM)B: Polynuclear Aromatic Hydr	rocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM)				04 1			0.4 101 0000		
LFG3 3.4		18-May-2023	25-May-2023	01-Jun-2023	~	27-May-2023	04-Jul-2023	 ✓ 	
Soil Glass Jar - Unpreserved (EP075(SIM)))	18-May-2023	25-May-2023	01- lun-2023	/	29-May-2023	04- Jul-2023		
Soil Glass Jar Uppreserved (EB075(SIM)	N	10-Way-2023	23-Way-2023	01 001 2020	~	23-Way-2023	04 001 2020	v	
LFG3 0.5.	LFG3 1.5.	18-May-2023	26-May-2023	01-Jun-2023	1	27-May-2023	05-Jul-2023	1	
LFG3 4.0.	LFG4 0.5.	-	-		-	-			
LFG4 2.0.	LFG4 5.0.								
LFG1 0.5.	LFG2 0.5.								
LFG2 1.5.	SB1 0.5.								
SB1 1.0.	QC1								
Soil Glass Jar - Unpreserved (EP075(SIM)))								
LFG1 1.5		18-May-2023	26-May-2023	01-Jun-2023	✓	28-May-2023	05-Jul-2023	 ✓ 	
EP080/071: Total Petroleum Hydrocarbor	IS								
Soil Glass Jar - Unpreserved (EP080)									
TRB1 - TRIP BLANK		08-May-2023	22-May-2023	22-May-2023	~	23-May-2023	22-May-2023	*	
Soil Glass Jar - Unpreserved (EP080)				04 1			04 1		
LFG3 3.4,	LFG1 1.0	18-May-2023	24-May-2023	01-Jun-2023	~	25-May-2023	01-Jun-2023	✓	
Soil Glass Jar - Unpreserved (EP080)	1 5 - 2 1 5	18-May-2023	25-May-2023	01- lun-2023	1	26-May-2023	01- lun-2023		
		10-may-2023	23-1418 y-2023	01 001 2020	~	20-1118 9-2025	01 001 2020	•	
LFG105	LFG1 1 5								
LEG2.0.5	LFG2 1 5								
SB1.0.5	SB1 1 0								
QC1	001110,								
Soil Glass Jar - Unpreserved (EP071)									
LFG3 0.5,	LFG3 1.5,	18-May-2023	26-May-2023	01-Jun-2023	1	27-May-2023	05-Jul-2023	 ✓ 	
LFG3 4.0,	LFG4 0.5,								
LFG4 2.0,	LFG4 5.0,								
LFG1 0.5,	LFG1 1.5,								
LFG2 0.5,	LFG2 1.5,								
SB1 0.5,	SB1 1.0,								
QC1									

Page	: 7 of 14
Work Order	: ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

Matrix: SOIL						Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time	
Method			Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocarbons - N	NEPM 2013 Fractions									
Soil Glass Jar - Unpreserved (EP080) TRB1 - TRIP BLANK			08-May-2023	22-May-2023	22-May-2023	4	23-May-2023	22-May-2023	×	
Soil Glass Jar - Unpreserved (EP080)										
LFG3 3.4,	LFG1 1.0		18-May-2023	24-May-2023	01-Jun-2023		25-May-2023	01-Jun-2023	✓	
Soil Glass Jar - Unpreserved (EP080)			40 May 2022	25 May 2022	01 Jun 2022		26 May 2022	01 Jun 2022		
LFG3 0.5,	LFG3 1.5,		10-Way-2023	25-1VIAy-2023	01-Juli-2023	~	20-11/18y-2023	01-Jun-2023	✓	
LFG3 4.0,	LFG4 0.5,									
LFG4 2.0,	LFG4 5.0,									
LFG1 0.5,	LFG1 1.5,									
LFG2 0.5,	LFG2 1.5,									
SB1 0.5,	SB1 1.0,									
QC1										
Soil Glass Jar - Unpreserved (EP071)										
LFG3 0.5,	LFG3 1.5,		18-May-2023	26-May-2023	01-Jun-2023	1	27-May-2023	05-Jul-2023	✓	
LFG3 4.0,	LFG4 0.5,									
LFG4 2.0,	LFG4 5.0,									
LFG1 0.5,	LFG1 1.5,									
LFG2 0.5.	LFG2 1.5.									
SB1 0 5	SB1 1 0									
QC1	001110,									
EP080: BTEXN										
Soil Glass Jar - Unpreserved (EP080)										
TRB1 - TRIP BLANK			08-May-2023	22-May-2023	22-May-2023	1	23-May-2023	22-May-2023	x	
Soil Glass Jar - Unpreserved (EP080)										
LFG3 0.5,	LFG3 1.5,		18-May-2023	25-May-2023	01-Jun-2023	1	26-May-2023	01-Jun-2023	 ✓ 	
LFG3 4.0.	LFG4 0.5.									
LEG4 2 0	LEG4 5 0									
LEG105	LEG115									
LEG2.0.5										
EI 62 0.3,	EF 02 1.3,									
0C1	361 1.0,									
EP231A: Parfluoraalkul Sulfania Acida			<u> </u>							
HDDE Soil Jor (EP221X)										
LFG4 5.0			18-May-2023	25-May-2023	14-Nov-2023	1	26-May-2023	04-Jul-2023	1	
Soil Glass Jar - Unpreserved (EP231X)										
LFG3 3.4			18-May-2023	25-May-2023	14-Nov-2023	✓	26-May-2023	04-Jul-2023	✓	
EP231B: Perfluoroalkyl Carboxylic Acids										
HDPE Soil Jar (EP231X)										
LFG4 5.0			18-May-2023	25-May-2023	14-Nov-2023		26-May-2023	04-Jul-2023	 ✓ 	
Soil Glass Jar - Unpreserved (EP231X)					44.11.00000			0.4 101 00000		
1 EG3 3 4			18-May-2023	25-May-2023	14-INOV-2023		26-May-2023	04-Jul-2023		

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231C: Perfluoroalkyl Sulfonamides							
HDPE Soil Jar (EP231X) LFG4 5.0	18-May-2023	25-May-2023	14-Nov-2023	~	26-May-2023	04-Jul-2023	1
Soil Glass Jar - Unpreserved (EP231X) LFG3 3.4	18-May-2023	25-May-2023	14-Nov-2023	1	26-May-2023	04-Jul-2023	1
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE Soil Jar (EP231X) LFG4 5.0	18-May-2023	25-May-2023	14-Nov-2023	1	26-May-2023	04-Jul-2023	1
Soil Glass Jar - Unpreserved (EP231X) LFG3 3.4	18-May-2023	25-May-2023	14-Nov-2023	~	26-May-2023	04-Jul-2023	1
EP231P: PFAS Sums							
HDPE Soil Jar (EP231X) LFG4 5.0	18-May-2023	25-May-2023	14-Nov-2023	1	26-May-2023	04-Jul-2023	✓
Soil Glass Jar - Unpreserved (EP231X) LFG3 3.4	18-May-2023	25-May-2023	14-Nov-2023	1	26-May-2023	04-Jul-2023	✓
Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time

							0
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071)							
RB1	18-May-2023	23-May-2023	25-May-2023	1	26-May-2023	02-Jul-2023	✓
Amber VOC Vial - Sulfuric Acid (EP080)							
RB1	18-May-2023	26-May-2023	01-Jun-2023	1	26-May-2023	01-Jun-2023	 ✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)							
RB1	18-May-2023	23-May-2023	25-May-2023	✓	26-May-2023	02-Jul-2023	 ✓
Amber VOC Vial - Sulfuric Acid (EP080)							
RB1	18-May-2023	26-May-2023	01-Jun-2023	✓	26-May-2023	01-Jun-2023	✓
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080)							
RB1	18-May-2023	26-May-2023	01-Jun-2023	1	26-May-2023	01-Jun-2023	 ✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Anions - Soluble	ED040S	1	12	8.33	10.00	×	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	5	46	10.87	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	4	27	14.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH (1:5)	EA002	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	4	33	12.12	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	4	33	12.12	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	3	30	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction (Silica Gel Clean Up)	EP071SG-S	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	33	12.12	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	4	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Anions - Soluble	ED040S	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	3	27	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH (1:5)	EA002	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	6	33.33	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	33	6.06	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	33	6.06	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	30	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction (Silica Gel Clean Up)	EP071SG-S	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	33	9.09	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page	: 10 of 14
Work Order	: ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

TRH Volatiles/BTEX

Method Blanks (MB)

Matrix: SOIL				Evaluatio	on: × = Quality Co	ontrol frequency i	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count Rate (%)				·	Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Anions - Soluble	ED040S	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	3	27	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	33	6.06	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	33	6.06	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	30	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction (Silica Gel Clean Up)	EP071SG-S	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	33	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	4	50.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	3	27	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	33	6.06	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	33	6.06	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	30	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction (Silica Gel Clean Up)	EP071SG-S	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	33	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	on: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
TRH - Semivolatile Fraction	EP071	0	6	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
TRH - Semivolatile Fraction	EP071	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard

20

5.00

5.00

 \checkmark

EP080

1

NEPM 2013 B3 & ALS QC Standard

Page	: 11 of 14
Work Order	: ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency n	ot within specification ; \checkmark = Quality Control frequency within specification .	
Quality Control Sample Type		Со	unt	Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Method Blanks (MB) - Continued								
TRH - Semivolatile Fraction	EP071	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
TRH - Semivolatile Fraction	EP071	0	6	0.00	5.00	£	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Major Anions - Soluble	ED040S	SOIL	In house: Soluble Anions are determined off a 1:5 soil / water extract by ICPAES.
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	SOIL	In house: Referenced to USEPA SW846, Method 3060. Hexavalent chromium is extracted by alkaline digestion. The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	SOIL	In house: Referenced to APHA 4500-CN C / ASTM D7511 / ISO 14403. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3).
WAD Cyanide by Segmented Flow Analyser	EK028SF	SOIL	In house: Referenced to APHA 4500-CN C&O / ISO 14403. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Hydrogen cyanide is liberated from a slightly acidified (pH 4.5) and is dialysed. Tight cyanide complexes that would not be amenable to oxidation by chlorine are not converted. Iron cyanide complexes are precipitated with zinc acetate. Liberated HCN diffuses through a membrane into a stream of sodium hydroxide where it is carried as CN- The cyanide in caustic solution is buffered to pH 5.2 and further converted to cyanogen chloride by reaction with chloramine-T. Cyanogen chloride subsequently reacts with 4-pyridine carboxylic and 1,3-dimethylbarbituric acids to give a red colour complex. This colour is measured at 600 nm. This method is compliant with NEPM Schedule B(3).

Analytical Methods	Method	Matrix	Method Descriptions
Total Fluoride	EK040T	SOIL	(In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate / Potassium Carbonate fusion dissolution.
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction (Silica Gel Clean Up)	EP071SG-S	SOIL	In house: Referenced to USEPA SW 846 - 8015. Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
Volatile Organic Compounds	EP074	SOIL	In house: Referenced to USEPA SW 846 - 8260 Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
NaOH leach for CN in Soils	CN-PR	SOIL	In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.
Alkaline digestion for Hexavalent	EG048PR	SOIL	In house: Referenced to USEPA SW846, Method 3060A.
Total Fluoride	EK040T-PR	SOIL	In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux.

Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
QuECheRS Extraction of Solids	ORG71	SOIL	In house: Sequential extractions with Acetonitrile/Methanol by shaking. Extraction efficiency aided by the addition of salts under acidic conditions. Where relevant, interferences from co-extracted organics are removed with dispersive clean-up media (dSPE). The extract is either diluted or concentrated and exchanged into the analytical solvent.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

CERTIFICATE OF ANALYSIS Page Work Order : ES2316686 : 1 of 26 Client : ARC ENVIRONMENTAL Laboratory : Environmental Division Sydney Contact : MR JAY PARMANSCHE Contact : Katie Davis Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : Suite 103, 7 Jeffcott Street WEST MELBOURNE Telephone : 03 8383 1950 Telephone : +61-2-8784 8555 Project **Date Samples Received** : 18-May-2023 19:30 · ____ Order number Date Analysis Commenced : 22-May-2023 : -----C-O-C number Issue Date · ____ : 30-May-2023 16:58 Sampler · ____ Site : -----Quote number : MEBQ/216/21 Primary work "halahat Accreditation No. 825

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

This Certificate of Analysis contains the following information:

: 30

: 19

- General Comments
- Analytical Results

No. of samples received

No. of samples analysed

- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alana Smylie	Team Leader - Asbestos	Newcastle - Asbestos, Mayfield West, NSW
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Inorganics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW
Zoran Grozdanovski	Team Leader - Chemistry	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP074: Where reported, Total Trihalomethanes is the sum of the reported concentrations of all Trihalomethanes at or above the LOR.
- EP074: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP074: Where reported, Sum of chlorinated hydrocarbons includes carbon tetrachloride, chlorobenzene, chloroform, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dichlorobenzene, 1,1,2-trichlorobenzene, 1,2,4-trichlorobenzene, 1,1,1-trichlorobenzene, 1,1,2-trichlorobenzene, 1,2,4-trichlorobenzene, 1,1,2-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4-trichlorobe
- EP074: Where reported, Total Trimethylbenzenes is the sum of the reported concentrations of 1.2.3-Trimethylbenzene, 1.2.4-Trimethylbenzene and 1.3.5-Trimethylbenzene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005T: Poor precision was obtained for Lead on sample ES2317303 # 018. Confirmed by re-digestion and reanalysis.
- EP071: Results of sample QC1 have been confirmed by re-extraction and re-analysis.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.

Page	: 3 of 26
Work Order	ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG3 0.5	LFG3 1.5	LFG3 3.4	LFG3 4.0	LFG4 0.5
		Sampli	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-001	ES2316686-003	ES2316686-006	ES2316686-007	ES2316686-009
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	9.2	9.8		8.4	8.7
EA055: Moisture Content (Dried @ 105-	-110°C)							
Moisture Content		1.0	%	8.9	15.0	15.4	18.9	11.6
EA200: AS 4964 - 2004 Identification of	Asbestos in Soils					·		
Asbestos Detected	1332-21-4	0.1	g/kg		No	No		
Asbestos (Trace)	1332-21-4	-	Fibres		No	No		
Asbestos Type	1332-21-4	-			-	-		
Sample weight (dry)		0.01	g		55.3	45.9		
APPROVED IDENTIFIER:		-			A. SMYLIE	A. SMYLIE		
Synthetic Mineral Fibre		-			No	No		
Organic Fibre		-			No	No		
ED040S: Soluble Major Anions								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	130	420		260	130
EG005(ED093)T: Total Metals by ICP-A	ES							
Beryllium	7440-41-7	1	mg/kg			<1		
Molybdenum	7439-98-7	2	mg/kg			<2		
Selenium	7782-49-2	5	mg/kg			<5		
Silver	7440-22-4	2	mg/kg			<2		
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	10	6
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	14	20		28	15
Copper	7440-50-8	5	mg/kg	19	24		40	26
Lead	7439-92-1	5	mg/kg	27	45	26	473	40
Nickel	7440-02-0	2	mg/kg	11	12	6	22	12
Zinc	7440-66-6	5	mg/kg	50	55		337	101
EG035T: Total Recoverable Mercury by	y FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	0.1	0.2
EG048: Hexavalent Chromium (Alkaline	e Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg			<0.5		
EK026SF: Total CN by Segmented Flow	w Analyser							
Total Cyanide	57-12-5	1	mg/kg			<1		
EK028SF: Weak Acid Dissociable CN b	by Segmented Flow	w Analyse	er					
Weak Acid Dissociable Cyanide		1	mg/kg			<1		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG3 0.5	LFG3 1.5	LFG3 3.4	LFG3 4.0	LFG4 0.5
		Samplii	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-001	ES2316686-003	ES2316686-006	ES2316686-007	ES2316686-009
				Result	Result	Result	Result	Result
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg			180		
EP066: Polychlorinated Biphenyls (PCB)								
Total Polychlorinated biphenyls		0.1	mg/kg			<0.1		
EP068A: Organochlorine Pesticides (OC)								
alpha-BHC	319-84-6	0.05	mg/kg			<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg			<0.05		
beta-BHC	319-85-7	0.05	mg/kg			<0.05		
gamma-BHC	58-89-9	0.05	mg/kg			<0.05		
delta-BHC	319-86-8	0.05	mg/kg			<0.05		
Heptachlor	76-44-8	0.05	mg/kg			<0.05		
Aldrin	309-00-2	0.05	mg/kg			<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg			<0.05		
^ Total Chlordane (sum)		0.05	mg/kg			<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg			<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg			<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg			<0.05		
Dieldrin	60-57-1	0.05	mg/kg			<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg			<0.05		
Endrin	72-20-8	0.05	mg/kg			<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg			<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg			<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg			<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg			<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg			<0.2		
EP068B: Organophosphorus Pesticides (OP)							
Chlorpyrifos	2921-88-2	0.05	mg/kg			<0.05		
EP071 SG: Total Recoverable Hydrocarbo	ns - NEPM 201	3 Fraction	is - Silica gel o	cleanup				
>C10 - C16 Fraction		50	mg/kg			<50		
>C16 - C34 Fraction		100	mg/kg			<100		
>C34 - C40 Fraction		100	mg/kg			<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg			<50		
EP071 SG-S: Total Petroleum Hydrocarbo	ns in Soil - Sili	ca gel clea	anup					
C10 - C14 Fraction		50	mg/kg			<50		
C15 - C28 Fraction		100	mg/kg			<100		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG3 0.5	LFG3 1.5	LFG3 3.4	LFG3 4.0	LFG4 0.5
		Sampli	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-001	ES2316686-003	ES2316686-006	ES2316686-007	ES2316686-009
				Result	Result	Result	Result	Result
EP071 SG-S: Total Petroleum Hydroc	arbons in Soil - Silic	ca gel clea	anup - Continue	ed				
C29 - C36 Fraction		100	mg/kg			<100		
^ C10 - C36 Fraction (sum)		50	mg/kg			<50		
EP074A: Monocyclic Aromatic Hydro	carbons							
Benzene	71-43-2	0.2	mg/kg			<0.2		
Toluene	108-88-3	0.5	mg/kg			<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg			<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg			<0.5		
Styrene	100-42-5	0.5	mg/kg			<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg			<0.5		
EP074B: Oxygenated Compounds								
2-Butanone (MEK)	78-93-3	5	mg/kg			<5		
EP074E: Halogenated Aliphatic Com	pounds							
Vinyl chloride	75-01-4	4	mg/kg			<4		
1.1-Dichloroethene	75-35-4	0.5	mg/kg			<0.5		
Methylene chloride	75-09-2	0.5	mg/kg			<0.5		
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg			<0.5		
Carbon Tetrachloride	56-23-5	0.5	mg/kg			<0.5		
1.2-Dichloroethane	107-06-2	0.5	mg/kg			<0.5		
Trichloroethene	79-01-6	0.5	mg/kg			<0.5		
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg			<0.5		
Tetrachloroethene	127-18-4	0.5	mg/kg			<0.5		
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg			<0.5		
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg			<0.5		
EP074F: Halogenated Aromatic Com	pounds							
Chlorobenzene	108-90-7	0.5	mg/kg			<0.5		
EP074G: Trihalomethanes								
Chloroform	67-66-3	0.5	mg/kg			<0.5		
EP075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	0.5	mg/kg			<0.5		
2-Methylphenol	95-48-7	0.5	mg/kg			<0.5		
3- & 4-Methylphenol	1319-77-3	1	mg/kg			<1		
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg			<0.5		
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg			<0.5		
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg			<0.5		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG3 0.5	LFG3 1.5	LFG3 3.4	LFG3 4.0	LFG4 0.5
		Sampli	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-001	ES2316686-003	ES2316686-006	ES2316686-007	ES2316686-009
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds	- Continued							
Pentachlorophenol	87-86-5	2	mg/kg			<2		
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	1.8	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	1.3	<0.5	0.6	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	1.0	3.4	<0.5	1.2	0.8
Pyrene	129-00-0	0.5	mg/kg	0.8	3.3	<0.5	1.1	0.7
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	1.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	1.4	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	1.7	<0.5	0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	0.8	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	1.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	0.7	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	0.9	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	1.8	16.5	<0.5	5.2	1.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	2.0	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	2.2	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	2.5	1.2	1.2	1.2
EP080/071: Total Petroleum Hydroca	irbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50		<50	<50
C15 - C28 Fraction		100	mg/kg	<100	110		520	<100
C29 - C36 Fraction		100	mg/kg	<100	120		300	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	230		820	<50
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	14	<10
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10		14	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50		50	<50
>C16 - C34 Fraction		100	mg/kg	110	190		730	<100

Sub-Matrix: SOIL			Sample ID	LFG3 0.5	LFG3 1.5	LFG3 3.4	LFG3 4.0	LFG4 0.5
		Sampli	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-001	ES2316686-003	ES2316686-006	ES2316686-007	ES2316686-009
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns - Continued					
>C34 - C40 Fraction		100	mg/kg	<100	100		170	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	110	290		950	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50		<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2		<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2		<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1		2	<1
EP231A: Perfluoroalkyl Sulfonic Acids	;				·			
Perfluorobutane sulfonic acid	375-73-5	0.0002	mg/kg			<0.0002		
(PFBS)								
Perfluoropentane sulfonic acid	2706-91-4	0.0002	mg/kg			<0.0002		
(PFPeS)	055.40.4	0.0002	malka			<0.0002		
Perfluorohexane sulfonic acid	355-46-4	0.0002	mg/kg			<0.0002		
(PFRXS) Porfluorobontano sulfonis asid	375 02 8	0.0002	ma/ka			<0.0002		
(PEHnS)	375-92-0	0.0002	ilig/kg			10.0002		
Perfluorooctane sulfonic acid	1763-23-1	0.0002	mg/kg			<0.0002		
(PFOS)								
Perfluorodecane sulfonic acid	335-77-3	0.0002	mg/kg			<0.0002		
(PFDS)								
EP231B: Perfluoroalkyl Carboxylic Ac	ids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg			<0.001		
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg			<0.0002		
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg			<0.0002		
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg			<0.0002		
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg			<0.0002		
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg			<0.0002		
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg			<0.0002		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG3 0.5	LFG3 1.5	LFG3 3.4	LFG3 4.0	LFG4 0.5
		Samplii	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-001	ES2316686-003	ES2316686-006	ES2316686-007	ES2316686-009
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic Ac	ids - Continued							
Perfluoroundecanoic acid	2058-94-8	0.0002	mg/kg			<0.0002		
(PFUnDA)								
Perfluorododecanoic acid	307-55-1	0.0002	mg/kg			<0.0002		
(PFDoDA)								
Perfluorotridecanoic acid	72629-94-8	0.0002	mg/kg			<0.0002		
(PFTrDA)		0.0005				-0.0005		
Perfluorotetradecanoic acid	376-06-7	0.0005	mg/kg			<0.0005		
EP231C: Perfluoroalkyl Sulfonamides	754 04 0	0.0002	malka			<0.0002		
(EOSA)	754-91-6	0.0002	тід/кд			<0.0002		
N Methyl perfluereestane	31506 32 8	0.0005	ma/ka			<0.0005		
sulfonamide (MeFOSA)	51500-52-0	0.0000	ingrig			10.0000		
N-Ethyl perfluorooctane	4151-50-2	0.0005	mg/kg			<0.0005		
sulfonamide (EtFOSA)			0.0					
N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg			<0.0005		
sulfonamidoethanol (MeFOSE)								
N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg			<0.0005		
sulfonamidoethanol (EtFOSE)								
N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg			<0.0002		
sulfonamidoacetic acid								
	0004 50 0	0.0002	200/100			<0.0000		
N-Ethyl perfluorooctane	2991-50-6	0.0002	тід/кд			<0.0002		
(EtEOSAA)								
EP231D: (n:2) Eluorotelomer Sulfonic	Acids							
4:2 Eluorotelomer sulfonic acid	757124-72-4	0.0005	ma/ka			<0.0005		
(4:2 FTS)	101121721							
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.0005	mg/kg			<0.0005		
(6:2 FTS)								
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg			<0.0005		
(8:2 FTS)								
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.0005	mg/kg			<0.0005		
(10:2 FTS)								
EP231P: PFAS Sums								
Sum of PFAS		0.0002	mg/kg			<0.0002		

Sub-Matrix: SOIL			Sample ID	LFG3 0.5	LFG3 1.5	LFG3 3.4	LFG3 4.0	LFG4 0.5
		Samplii	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-001	ES2316686-003	ES2316686-006	ES2316686-007	ES2316686-009
				Result	Result	Result	Result	Result
EP231P: PFAS Sums - Continued								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg			<0.0002		
Sum of PFAS (WA DER List)		0.0002	mg/kg			<0.0002		
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%			111		
EP068S: Organochlorine Pesticide S	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%			111		
EP068T: Organophosphorus Pestici	de Surrogate							
DEF	78-48-8	0.05	%			116		
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.5	%			126		
Toluene-D8	2037-26-5	0.5	%			105		
4-Bromofluorobenzene	460-00-4	0.5	%			96.0		
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.5	%	88.1	87.6	83.4	94.9	88.4
2-Chlorophenol-D4	93951-73-6	0.5	%	82.8	83.0	83.4	89.8	81.8
2.4.6-Tribromophenol	118-79-6	0.5	%	62.4	55.7	98.1	80.0	55.3
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	92.5	93.0	87.8	99.7	94.8
Anthracene-d10	1719-06-8	0.5	%	89.4	91.1	94.9	97.4	93.2
4-Terphenyl-d14	1718-51-0	0.5	%	98.2	99.8	97.2	105	101
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.1	91.3	99.5	85.9	88.5
Toluene-D8	2037-26-5	0.2	%	103	99.4	100.0	99.5	99.2
4-Bromofluorobenzene	460-00-4	0.2	%	111	99.0	97.0	109	106
EP231S: PFAS Surrogate								
13C4-PFOS		0.0002	%			118		
13C8-PFOA		0.0002	%			108		

Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			LFG4 2.0	LFG4 5.0	LFG1 0.5	LFG1 1.0	LFG1 1.5		
	Sampling date / time			18-May-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2316686-012	ES2316686-015	ES2316686-017	ES2316686-018	ES2316686-019		
				Result	Result	Result	Result	Result		
EA002: pH 1:5 (Soils)										
pH Value		0.1	pH Unit	8.0	8.3	8.2		7.9		
EA055: Moisture Content (Dried @ 10	5-110°C)									
Moisture Content		1.0	%	14.4	17.9	19.0	15.1	15.8		
EA200: AS 4964 - 2004 Identification of	of Asbestos in Soils									
Asbestos Detected	1332-21-4	0.1	g/kg	No	No*	No		No		
Asbestos (Trace)	1332-21-4	-	Fibres			No		No		
Asbestos (Trace)	1332-21-4	5	Fibres	No	No					
Asbestos Type	1332-21-4	-		-	Ch	-		-		
Sample weight (dry)		0.01	g	378	223	43.9		54.1		
APPROVED IDENTIFIER:		-		A. SMYLIE	A. SMYLIE	A. SMYLIE		A. SMYLIE		
Synthetic Mineral Fibre		-		No	No	No		No		
Organic Fibre		-		No	No	No		No		
ED040S: Soluble Major Anions										
Sulfate as SO4 2-	14808-79-8	10	mg/kg	50	220	140		60		
EG005(ED093)T: Total Metals by ICP-A	AES									
Beryllium	7440-41-7	1	mg/kg				<1			
Molybdenum	7439-98-7	2	mg/kg				<2			
Selenium	7782-49-2	5	mg/kg				<5			
Silver	7440-22-4	2	mg/kg				<2			
Arsenic	7440-38-2	5	mg/kg	6	14	<5	<5	<5		
Cadmium	7440-43-9	1	mg/kg	<1	1	<1	<1	<1		
Chromium	7440-47-3	2	mg/kg	13	54	8		11		
Copper	7440-50-8	5	mg/kg	14	42	16		16		
Lead	7439-92-1	5	mg/kg	26	108	33	26	31		
Nickel	7440-02-0	2	mg/kg	7	12	7	5	7		
Zinc	7440-66-6	5	mg/kg	60	226	66		47		
EG035T: Total Recoverable Mercury by FIMS										
Mercury	7439-97-6	0.1	mg/kg	<0.1	0.2	<0.1	<0.1	0.1		
EG048: Hexavalent Chromium (Alkaline Digest)										
Hexavalent Chromium	18540-29-9	0.5	mg/kg				<0.5			
EK026SF: Total CN by Segmented Flow Analyser										
Total Cyanide	57-12-5	1	mg/kg				<1			
EK028SF: Weak Acid Dissociable CN by Segmented Flow Analyser										

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG4 2.0	LFG4 5.0	LFG1 0.5	LFG1 1.0	LFG1 1.5		
	Sampling date / time			18-May-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2316686-012	ES2316686-015	ES2316686-017	ES2316686-018	ES2316686-019		
				Result	Result	Result	Result	Result		
EK028SF: Weak Acid Dissociable CN by Segmented Flow Analyser - Continued										
Weak Acid Dissociable Cyanide		1	mg/kg				<1			
EK040T: Fluoride Total										
Fluoride	16984-48-8	40	mg/kg				90			
EP066: Polychlorinated Biphenyls (PCB)										
Total Polychlorinated biphenyls		0.1	mg/kg				<0.1			
EP068A: Organochlorine Pesticides (OC	;)					·				
alpha-BHC	319-84-6	0.05	mg/kg				<0.05			
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg				<0.05			
beta-BHC	319-85-7	0.05	mg/kg				<0.05			
gamma-BHC	58-89-9	0.05	mg/kg				<0.05			
delta-BHC	319-86-8	0.05	mg/kg				<0.05			
Heptachlor	76-44-8	0.05	mg/kg				<0.05			
Aldrin	309-00-2	0.05	mg/kg				<0.05			
Heptachlor epoxide	1024-57-3	0.05	mg/kg				<0.05			
^ Total Chlordane (sum)		0.05	mg/kg				<0.05			
trans-Chlordane	5103-74-2	0.05	mg/kg				<0.05			
alpha-Endosulfan	959-98-8	0.05	mg/kg				<0.05			
cis-Chlordane	5103-71-9	0.05	mg/kg				<0.05			
Dieldrin	60-57-1	0.05	mg/kg				<0.05			
4.4`-DDE	72-55-9	0.05	mg/kg				<0.05			
Endrin	72-20-8	0.05	mg/kg				<0.05			
beta-Endosulfan	33213-65-9	0.05	mg/kg				<0.05			
4.4`-DDD	72-54-8	0.05	mg/kg				<0.05			
Endrin aldehyde	7421-93-4	0.05	mg/kg				<0.05			
Endosulfan sulfate	1031-07-8	0.05	mg/kg				<0.05			
4.4`-DDT	50-29-3	0.2	mg/kg				<0.2			
EP068B: Organophosphorus Pesticides (OP)										
Chlorpyrifos	2921-88-2	0.05	mg/kg				<0.05			
EP071 SG: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Silica gel cleanup										
>C10 - C16 Fraction		50	mg/kg				<50			
>C16 - C34 Fraction		100	mg/kg				<100			
>C34 - C40 Fraction		100	mg/kg				<100			
^ >C10 - C40 Fraction (sum)		50	mg/kg				<50			
EP071 SG-S: Total Petroleum Hydrocarbons in Soil - Silica gel cleanup										

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG4 2.0	LFG4 5.0	LFG1 0.5	LFG1 1.0	LFG1 1.5		
	Sampling date / time			18-May-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2316686-012	ES2316686-015	ES2316686-017	ES2316686-018	ES2316686-019		
				Result	Result	Result	Result	Result		
EP071 SG-S: Total Petroleum Hydrocarbons in Soil - Silica gel cleanup - Continued										
C10 - C14 Fraction		50	mg/kg				<50			
C15 - C28 Fraction		100	mg/kg				<100			
C29 - C36 Fraction		100	mg/kg				<100			
^ C10 - C36 Fraction (sum)		50	mg/kg				<50			
EP074A: Monocyclic Aromatic Hydrocarbons										
Benzene	71-43-2	0.2	mg/kg				<0.2			
Toluene	108-88-3	0.5	mg/kg				<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg				<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg				<0.5			
Styrene	100-42-5	0.5	mg/kg				<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg				<0.5			
EP074B: Oxygenated Compounds										
2-Butanone (MEK)	78-93-3	5	mg/kg				<5			
EP074E: Halogenated Aliphatic Com	pounds									
Vinyl chloride	75-01-4	4	mg/kg				<4			
1.1-Dichloroethene	75-35-4	0.5	mg/kg				<0.5			
Methylene chloride	75-09-2	0.5	mg/kg				<0.5			
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg				<0.5			
Carbon Tetrachloride	56-23-5	0.5	mg/kg				<0.5			
1.2-Dichloroethane	107-06-2	0.5	mg/kg				<0.5			
Trichloroethene	79-01-6	0.5	mg/kg				<0.5			
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg				<0.5			
Tetrachloroethene	127-18-4	0.5	mg/kg				<0.5			
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg				<0.5			
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg				<0.5			
EP074F: Halogenated Aromatic Com	pounds									
Chlorobenzene	108-90-7	0.5	mg/kg				<0.5			
EP074G: Trihalomethanes										
Chloroform	67-66-3	0.5	mg/kg				<0.5			
EP075(SIM)A: Phenolic Compounds										
Phenol	108-95-2	0.5	mg/kg				<0.5			
2-Methylphenol	95-48-7	0.5	mg/kg				<0.5			
3- & 4-Methylphenol	1319-77-3	1	mg/kg				<1			
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg				<0.5			
Page : 14 of 26 Work Order : ES2316686 Client : ARC ENVIRONMENTAL Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG4 2.0	LFG4 5.0	LFG1 0.5	LFG1 1.0	LFG1 1.5
		Samplii	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-012	ES2316686-015	ES2316686-017	ES2316686-018	ES2316686-019
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds -	Continued							
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg				<0.5	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg				<0.5	
Pentachlorophenol	87-86-5	2	mg/kg				<2	
EP075(SIM)B: Polynuclear Aromatic F	lydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	1.1	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	0.6	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	0.6	0.9	<0.5	<0.5	0.5
Pyrene	129-00-0	0.5	mg/kg	0.6	0.9	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbor	1S	0.5	mg/kg	1.2	3.5	<0.5	<0.5	0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50		<50
C15 - C28 Fraction		100	mg/kg	<100	950	<100		<100
C29 - C36 Fraction		100	mg/kg	<100	600	<100		<100
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50	1550	<50		<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	าร					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	12	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	12	<10		<10
(F1)								

Page : 15 of 26 Work Order : ES2316686 Client : ARC ENVIRONMENTAL Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG4 2.0	LFG4 5.0	LFG1 0.5	LFG1 1.0	LFG1 1.5
		Samplii	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-012	ES2316686-015	ES2316686-017	ES2316686-018	ES2316686-019
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns - Continued					
>C10 - C16 Fraction		50	mg/kg	<50	60	<50		<50
>C16 - C34 Fraction		100	mg/kg	<100	1380	<100		<100
>C34 - C40 Fraction		100	mg/kg	<100	330	<100		<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	1770	<50		<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	60	<50		<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2		<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5		<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5		<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5		<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5		<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2		<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5		<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1		<1
EP231A: Perfluoroalkyl Sulfonic Acids	;							
Perfluorobutane sulfonic acid	375-73-5	0.0002	mg/kg		<0.0002			
(PFBS)	2706 01 4	0.0002	ma/ka		<0.0002			
(PFPeS)	2700-91-4	0.0002	ilig/kg		~0.0002			
Perfluorohexane sulfonic acid	355-46-4	0.0002	mg/kg		<0.0002			
(PFHxS)								
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg		<0.0002			
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg		0.0008			
Perfluorodecane sulfonic acid	335-77-3	0.0002	mg/kg		<0.0002			
(PFDS)								
EP231B: Perfluoroalkyl Carboxylic Ac	ids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg		<0.001			
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg		<0.0002			
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg		<0.0002			
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg		<0.0002			
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg		<0.0002			
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg		<0.0002			

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG4 2.0	LFG4 5.0	LFG1 0.5	LFG1 1.0	LFG1 1.5
		Samplii	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-012	ES2316686-015	ES2316686-017	ES2316686-018	ES2316686-019
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic A	cids - Continued							
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg		<0.0002			
Perfluoroundecanoic acid	2058-94-8	0.0002	mg/kg		<0.0002			
Perfluorododecanoic acid	307-55-1	0.0002	mg/kg		<0.0002			
(PFDoDA)			0.0					
Perfluorotridecanoic acid (PETrDA)	72629-94-8	0.0002	mg/kg		<0.0002			
Perfluorotetradecanoic acid	376-06-7	0.0005	mg/kg		<0.0005			
(PFTeDA)								
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide	754-91-6	0.0002	mg/kg		<0.0002			
(FOSA)								
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg		<0.0005			
N-Ethyl perfluorooctane	4151-50-2	0.0005	mg/kg		<0.0005			
sulfonamide (EtFOSA)								
N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg		<0.0005			
Sulfonamidoetnanol (MeFOSE)	1601.00.2	0.0005	ma/ka		<0.0005			
N-Ethyl periluorooctane	1091-99-2	0.0000	mg/kg		\$0.0000			
N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg		<0.0002			
sulfonamidoacetic acid								
(MeFOSAA)								
N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg		0.0042			
sulfonamidoacetic acid								
(EtFOSAA)								
EP231D: (n:2) Fluorotelomer Sulfonic	Acids	0.0005	200/10		<0.0005			
4:2 Fluorotelomer sulfonic acid	/5/124-/2-4	0.0005	тід/кд		<0.0005			
6:2 Eluorotelomer sulfonic acid	27619-97-2	0.0005	ma/ka		<0.0005			
(6:2 FTS)	21010 01-2		55					
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg		<0.0005			
(8:2 FTS)								
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg		<0.0005			
EP231P: PFAS Sums								

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG4 2.0	LFG4 5.0	LFG1 0.5	LFG1 1.0	LFG1 1.5
		Sampli	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-012	ES2316686-015	ES2316686-017	ES2316686-018	ES2316686-019
				Result	Result	Result	Result	Result
EP231P: PFAS Sums - Continued								
Sum of PFAS		0.0002	mg/kg		0.0050			
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg		0.0008			
Sum of PFAS (WA DER List)		0.0002	mg/kg		0.0008			
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%				100	
EP068S: Organochlorine Pesticide S	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%				103	
EP068T: Organophosphorus Pestic	ide Surrogate							
DEF	78-48-8	0.05	%				111	
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.5	%				98.1	
Toluene-D8	2037-26-5	0.5	%				107	
4-Bromofluorobenzene	460-00-4	0.5	%				92.7	
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.5	%	89.7	95.5	92.8	84.0	91.6
2-Chlorophenol-D4	93951-73-6	0.5	%	84.8	91.7	86.5	100	86.1
2.4.6-Tribromophenol	118-79-6	0.5	%	57.7	57.9	67.8	93.2	55.8
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	94.2	99.8	94.5	86.8	94.3
Anthracene-d10	1719-06-8	0.5	%	92.1	98.8	96.1	97.2	93.3
4-Terphenyl-d14	1718-51-0	0.5	%	99.9	108	100	104	102
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	93.0	98.0	90.4	107	91.8
Toluene-D8	2037-26-5	0.2	%	106	109	99.1	108	100
4-Bromofluorobenzene	460-00-4	0.2	%	106	110	101	103	101
EP231S: PFAS Surrogate								
13C4-PFOS		0.0002	%		114			
13C8-PFOA		0.0002	%		108			

Sub-Matrix: SOIL (Matrix: SOIL)	o-Matrix: SOIL Sample ID atrix: SOIL)				LFG2 1.0	LFG2 1.5	LFG2 2.0	SB1 0.5
		Samplii	ng date / time	18-May-2023 00:00				
Compound CA	AS Number	LOR	Unit	ES2316686-021	ES2316686-022	ES2316686-023	ES2316686-024	ES2316686-025
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.8		8.3		8.6
EA055: Moisture Content (Dried @ 105-110°C)								
Moisture Content		1.0	%	6.5		13.8		9.0
EA200: AS 4964 - 2004 Identification of Asbest	tos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg		No	No	No	No
Asbestos (Trace)	1332-21-4	-	Fibres		No	No	No	No
Asbestos Type	1332-21-4	-			-	-	-	-
Sample weight (dry)		0.01	g		50.9	55.2	42.0	61.2
APPROVED IDENTIFIER:		-			A. SMYLIE	A. SMYLIE	A. SMYLIE	A. SMYLIE
Synthetic Mineral Fibre		-			No	No	No	No
Organic Fibre		-			No	No	No	No
ED040S: Soluble Major Anions								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	20		80		170
EG005(ED093)T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5		8		<5
Cadmium	7440-43-9	1	mg/kg	<1		<1		<1
Chromium	7440-47-3	2	mg/kg	10		14		10
Copper	7440-50-8	5	mg/kg	17		28		22
Lead	7439-92-1	5	mg/kg	27		42		34
Nickel	7440-02-0	2	mg/kg	8		6		13
Zinc	7440-66-6	5	mg/kg	50		45		55
EG035T: Total Recoverable Mercury by FIMS								
Mercury	7439-97-6	0.1	mg/kg	0.1		0.3		<0.1
EP075(SIM)B: Polynuclear Aromatic Hydrocart	bons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5		<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5		<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5		<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5		<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		0.6		<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5		0.7		<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5		<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5		<0.5

Page : 19 of 26 Work Order : ES2316686 Client : ARC ENVIRONMENTAL Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	LFG2 0.5	LFG2 1.0	LFG2 1.5	LFG2 2.0	SB1 0.5
		Sampli	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-021	ES2316686-022	ES2316686-023	ES2316686-024	ES2316686-025
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H		inued						
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5		<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5		<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5		<0.5
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	<0.5		1.3		<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5		<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6		0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2		1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10		<10		<10
C10 - C14 Fraction		50	mg/kg	<50		<50		<50
C15 - C28 Fraction		100	mg/kg	<100		<100		<100
C29 - C36 Fraction		100	mg/kg	<100		<100		<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50		<50		<50
EP080/071: Total Recoverable Hydrod	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		<10		<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10		<10		<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50		<50		<50
>C16 - C34 Fraction		100	mg/kg	<100		<100		<100
>C34 - C40 Fraction		100	mg/kg	<100		<100		<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50		<50		<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50		<50		<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5		<0.5		<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		<0.5		<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		<0.5		<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		<0.5		<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2		<0.2		<0.2
^ Total Xylenes		0.5	mg/kg	<0.5		<0.5		<0.5

Page	: 20 of 26
Work Order	: ES2316686
Client	: ARC ENVIRONMENTAL
Project	:

Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID		LFG2 0.5	LFG2 1.0	LFG2 1.5	LFG2 2.0	SB1 0.5
		Sampli	ng date / time	18-May-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2316686-021	ES2316686-022	ES2316686-023	ES2316686-024	ES2316686-025
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1		<1		<1
EP075(SIM)S: Phenolic Compound Sur	rogates							
Phenol-d6	13127-88-3	0.5	%	82.3		91.9		86.2
2-Chlorophenol-D4	93951-73-6	0.5	%	96.2		99.4		91.1
2.4.6-Tribromophenol	118-79-6	0.5	%	69.1		80.1		68.2
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	93.3		99.5		85.6
Anthracene-d10	1719-06-8	0.5	%	103		107		107
4-Terphenyl-d14	1718-51-0	0.5	%	80.9		87.8		72.4
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	92.9		92.6		94.3
Toluene-D8	2037-26-5	0.2	%	101		103		103
4-Bromofluorobenzene	460-00-4	0.2	%	105		103		103

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB1 1.0		QC1	
(Sampli	na date / time	18-May-2023 00:00	08-May-2023 00:00	18-May-2023 00:00	
Compound	CAS Number	LOR	l Init	ES2316686-026	ES2316686-028	ES2316686-029	
Compound	CAS Number	LOIN	- Onne	Bogult	Bogult	Popult	
				Result	Result	Result	
nH Value		0.1	nH Unit	8 7			
EAGES: Mainture Content (Dried @ 405	440%C)		priorite				
Moisture Content	-110 C)	1.0	%	10.8		18.6	
	Achectes in Ceile	1.0	70			10.0	
Asbestos Detected		0.1	a/ka	No			
Asbestos (Trace)	1332-21-4	-	Fibres	No			
Asbestos Type	1332-21-4	-					
Sample weight (drv)	1002 21 4	0.01	a	45.1			
APPROVED IDENTIFIER:		-		A. SMYLIE			
Synthetic Mineral Fibre		-		No			
Organic Fibre		-		No			
ED040S: Soluble Maior Anions							
Sulfate as SO4 2-	14808-79-8	10	mg/kg	150			
EG005(ED093)T: Total Metals by ICP-A	ES						
Arsenic	7440-38-2	5	mg/kg	<5		8	
Cadmium	7440-43-9	1	mg/kg	<1		<1	
Chromium	7440-47-3	2	mg/kg	8		18	
Copper	7440-50-8	5	mg/kg	9		41	
Lead	7439-92-1	5	mg/kg	18		232	
Nickel	7440-02-0	2	mg/kg	7		9	
Zinc	7440-66-6	5	mg/kg	37		141	
EG035T: Total Recoverable Mercury b	y FIMS						
Mercury	7439-97-6	0.1	mg/kg	<0.1		0.1	
EP075(SIM)B: Polynuclear Aromatic Hy	ydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5		3.3	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		0.8	
Pyrene	129-00-0	0.5	mg/kg	<0.5		0.7	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5	

Page : 22 of 26 Work Order : ES2316686 Client : ARC ENVIRONMENTAL Project : ---

Sub-Matrix: SOIL			Sample ID	SB1 1.0	TRB1	QC1	
(Matrix: SOIL)					TRIP BLANK		
		Sampli	ng date / time	18-May-2023 00:00	08-May-2023 00:00	18-May-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2316686-026	ES2316686-028	ES2316686-029	
				Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	tinued					
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5		<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5	
^ Sum of polycyclic aromatic hydrocarbon	IS	0.5	mg/kg	<0.5		4.8	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2	
EP080/071: Total Petroleum Hydrocarl	bons						
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50		<50	
C15 - C28 Fraction		100	mg/kg	<100		110	
C29 - C36 Fraction		100	mg/kg	<100		<100	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50		110	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	าร				
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	
(F1)							
>C10 - C16 Fraction		50	mg/kg	<50		<50	
>C16 - C34 Fraction		100	mg/kg	<100		140	
>C34 - C40 Fraction		100	mg/kg	<100		<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50		140	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50		<50	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SB1 1.0	TRB1 TRIP BLANK	QC1	
		Sampli	ng date / time	18-May-2023 00:00	08-May-2023 00:00	18-May-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2316686-026	ES2316686-028	ES2316686-029	
				Result	Result	Result	
EP080: BTEXN - Continued							
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	2	
EP075(SIM)S: Phenolic Compound Surr	ogates						
Phenol-d6	13127-88-3	0.5	%	91.9		84.6	
2-Chlorophenol-D4	93951-73-6	0.5	%	97.1		96.4	
2.4.6-Tribromophenol	118-79-6	0.5	%	86.0		84.6	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	111		85.9	
Anthracene-d10	1719-06-8	0.5	%	107		105	
4-Terphenyl-d14	1718-51-0	0.5	%	82.1		91.6	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	91.9	101	97.6	
Toluene-D8	2037-26-5	0.2	%	99.2	98.8	105	
4-Bromofluorobenzene	460-00-4	0.2	%	100	91.7	106	

Page : 24 of 26 Work Order : ES2316686 Client : ARC ENVIRONMENTAL Project : ---

Sub-Matrix: WATER			Sample ID	RB1	 	
		Sampli	ng date / time	18-May-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2316686-030	 	
				Result	 	
EP080/071: Total Petroleum Hydrocarb	oons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	µg/L	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	 	
(F1)						
>C10 - C16 Fraction		100	µg/L	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes		2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	99.2	 	
Toluene-D8	2037-26-5	2	%	102	 	
4-Bromofluorobenzene	460-00-4	2	%	94.8	 	

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils	
EA200: Description	LFG4 2.0 - 18-May-2023 00:00	Soil sample.
EA200: Description	LFG4 5.0 - 18-May-2023 00:00	Soil sample containing one loose asbestos fibre bundle approximately 5x0.5x0.5mm.
EA200: Description	LFG3 1.5 - 18-May-2023 00:00	Soil sample.
EA200: Description	LFG3 3.4 - 18-May-2023 00:00	Soil sample.
EA200: Description	LFG1 0.5 - 18-May-2023 00:00	Soil sample.
EA200: Description	LFG1 1.5 - 18-May-2023 00:00	Soil sample.
EA200: Description	LFG2 1.0 - 18-May-2023 00:00	Soil sample.
EA200: Description	LFG2 1.5 - 18-May-2023 00:00	Soil sample.
EA200: Description	LFG2 2.0 - 18-May-2023 00:00	Soil sample.
EA200: Description	SB1 0.5 - 18-May-2023 00:00	Soil sample.
EA200: Description	SB1 1.0 - 18-May-2023 00:00	Soil sample.

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogat	e		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surro	ogate		
DEF	78-48-8	35	143
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	64	130
Toluene-D8	2037-26-5	66	136
4-Bromofluorobenzene	460-00-4	60	122
EP075(SIM)S: Phenolic Compound Surrogat	es		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	63	125
Toluene-D8	2037-26-5	67	124
4-Bromofluorobenzene	460-00-4	66	131
EP231S: PFAS Surrogate			
13C4-PFOS		60	120
13C8-PFOA		60	120
Sub-Matrix: WATER	Г	Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72	143
Toluene-D8	2037-26-5	75	131
4-Bromofluorobenzene	460-00-4	73	137

Inter-Laboratory Testing Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EK040T: Fluoride Total

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

ert attacker hei diskenen Ther office and an and a set of a Andrea and an an an the and an andrea and an	BORATORY USE ONLY (Circle)	tody Seal Intact? Peccaby IN NE Y IN NA	es dosed on Rectabry N NEY / N NA	ister/Sampler Complete and Not Damaged	Temperature * 21,3	JISHED BY: RELINQUISHED BY:	Grantine deal attention	D BY: RECEIVED BY:	set includes and approximate a		Additional Information	Ũ	Comments on LORs required, potential hazards, Ikely onstantional lyevels, or semples requiring specific OC analysis etc. (Lor detemb to outer anticest Lon autor detemb to	x 82 analyted	>							Environmental Division	Newcastle Work Order Reference	EN2306447		Telephone : + 61 2 4014 2500
C 44.05 (2010) Editoren d'antegioren Loren (2010) Editoren (20		(List due date):	COC SEQUENCE NUMBER (Circle) Reco	c: 1 2 3 4 5 6 7 Cani	≓: 1 2 3 4 5 6 7 Othe	RELINQUISHED BY: RELINQUI	Signatures and Societies	RECEIVED BY: RECEIVEI			ANAL YSES REQUESTED	uite Codes must be listed to attract suite price	₹ 63636 + 63636 + 63670 + 6367 + 637	×	*	× ×	× ×	×								
(600 E.samples.melbourge@alegicbel.com Phr. 0 (173 Sydnay Road Murigee NSN ² 2550 2 6755 E. mudgee.maik@alegiobal.com	NTS : N Standard TAT (List due date	multiple Don Standard or urgent TAT	tradard	00	5	543 RELINQUISHED BY:	Jellin Tennesse	RECEIVED BY:	JN 17.6.15 1030		Rofer to Canister Verification Roports and COAs for pressures measured by the Lab	Reporting Requirements S	19 Amhord Said car oner Pribri Primri Ar Internal Moor Halm		*	*	× 	~	· · · · · · · · · · · · · · · · · · ·							
erri V.L.J. 400-6 iatione-@alsglokal.com Plx. 03 8549 h.D.rive Clinton CLD -1830 D.M.JDGEE Britsglobal.com	TURNAROUND REQUIREME	(Standard TAT may be extended for	ALS QUOTE NO .: AR	COUNTRY OF ORIGIN:	UTACT PH:	IPLER MOBILE: J439 919) FORMAT (or default):	andal .com.a 4			Canister Gauge Pressures (PSI)		MATRIX Pre- Post (eg Air, Sampling Samplir soil Gas)	5- 02- 100 -5	2- 04 1	30 -2	1-36-5	V -30 -5								 - 90E (106 -
LERNSEATEL 2 byth Street Statt Ph. 07 82-15 7222 E: samples Jr GGLADSTONE Je Callemondal Ph. 07 7-171 5500 E: gladslonaf			JECT NO: 2207201	DER NO.: 4 4	CON	SAW	EDD	W B OLLEN N' ONN		SNO:	RMATION	NLS	DATE / TIME SAMPLED	22/06	1			~								
use and an array of the second s	isterisić Y N		PRO	PURCHASE OR	n cula			addresses are listed): deul	addresses are listed):	EMENT OR RETURN INSTRUCT	E CONTAINER INFO	CANISTER / SAMPLE DET/	CLIENT SAMPLE ID	LFhOL_220623	4F60h-220623	LFLO3_220623	LFLOY 220623	Q(01-220623								
u su sur a and a surray and a surray and a	Cherry Supplied Can		V VIII V VIII V	UEST NO:	NGER: 101 Parman	or vy annu	ALS? (YES / ())	(will default to PM if no other	(will default to PM if no other a	ECIAL MANDLING/REPLACE	GAS SAMPL		NISTER FLOW SIAL NO. SERVAL NO.	751222 285	189 555190	280550 622	168 555267	4 B9 0550K7		- -	 				-	 kirtuckions:
	CLIENT: FO/	OFFICE.	PROJECT: CO	CANISTER REQU	PROJECT MANA	SAMPLER:	COC Emailed to	Email Reports to	Email Invoice to	COMMENTS/SPE		CHO BSN SW	LAB ID CA	6	14	<u>[</u>]	(0)	ら								Job Specific Inc

									10.220
CON	NECTORS AND FLOW CONTROL.								Analyst's Initials & Date
Nc	Equipment Type	Duration (Frs)	Flow (ml/min)	P;oco	Garge	Certified	Sealed / Vacuum	Connection O Quick Connect S Swagelok	Rontal ¹
	Passive sampler - TWA			٩N	Yes	Yes	Yes / No	đ	Incl Above
e	Soil gas sampling train - single		60ml/min	Ŷ	Yes	Yes	Yes / Yes	a	Incl Above
	Soit gas sampling train - duplicate		60ml/min	Yes	Yes	Yes	Yes / Yes	a	Incl Above
4	Quick-connect fittings - female QT		•	•				a	\$120 ea. Replacement
-	Quick-connect fittings - male QT	•		•		•		a	\$120 ea. Replacement
-	Pressure Gauge - QT		•		•		Yes / Yes	a	\$250 ea. Replacement
	T-Piece - QT	-	,	Yes	°N N	Ŷ	Yes / Yes	a	\$300 ea. Replacement
	T-Piece - Swagelok	•	•	Yes	Š	N N		S	\$250 ea. Replacement
	Additional ¼" Swagelok nuts/ferrule	S S		•		'		s	\$5 ea. Replacement
-	Sampling Kit Case - Soil Gas	•	•	۰.		•	Yes/-	1	\$200 Replacement
4	Other (Specify)					tubing	•		
¹ Refer to	Acceptance of Terms								
ALS U	ise only: Clean Certificates Incluc	(N (V) beb	Leak C	heck OK	(N)	Recorder		Packed by:	<u></u> √5, s
Cani	ister Sampling Guide Included 🕅 N	() Blank CC	C Included	Ś	Dispa	atch Time / Dat	. 16	6.2.9.	
Coul	rier: TNT Consignment	Note #:	154	-823-	320	8#	oxes:	Dispatched E	3y: J.N
	Ī								

Approved Date: 23/06/2022

Page 1 of 3

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EN2306447			
Client Contact Address	: ARC ENVIRONMENTAL : MR JAY PARMANSCHE : Suite 103, 7 Jeffcott Street WEST MELBOURNE	Laboratory Contact Address	: Environme : Katie Davi : 5/585 Mai NSW Aus	ental Division Newcastle is tland Road Mayfield West tralia 2304
E-mail Telephone Facsimile	: jay@arcenvironmental.com.au : 03 8383 1950 :	E-mail Telephone Facsimile	: katie.davis : +61 2 401 : +61 2 496	s@alsglobal.com 4 2500 7 7382
Project Order number	: 2207292 FDL GWS Giants Audit : 2207292	Page Quote number	: 1 of 2 : EM2017A Primary w	RCENV0001 (MEBQ/216/21 ork)
C-O-C number Site	-C number : :		: NEPM 20	13 B3 & ALS QC Standard
Sampler	: DECLAN TENNENT			
Dates Date Samples Receiv Client Requested Due Date	ed : 27-Jun-2023 10:30 : 04-Jul-2023	Issue Date Scheduled Reporti	ng Date	: 27-Jun-2023 : 04-Jul-2023
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	/s : Carrier :	Security Seal Temperature No. of samples rec	eived / analysed	: Intact. : 21.3 : 5 / 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample Disposal Aqueous Chemistry (3 weeks), Aqueous Microbiological (1 week), Solid (2 months ± 1 week) from receipt of samples.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EN2306447-001	: [22-Jun-2023]	: LFG01_220623 - C12385_S137
EN2306447-002	: [22-Jun-2023]	: LFG02_220623 - C14189_S190
EN2306447-003	: [22-Jun-2023]	: LFG03_220623 - C14229_S082
EN2306447-004	: [22-Jun-2023]	: LFG04_220623 - C10768_S267
EN2306447-005	: [22-Jun-2023]	: QC01_220623 - C5489_S082

Summary of Sample(s) and Requested Analysis

Some items des process necessa tasks. Packages as the determine tasks, that are inclu If no sampling default 00:00 on is provided, the laboratory and component Matrix: AIR	cribed below may ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date wi displayed in bra	be part of a laboratory ion of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	CAN-1.4L-SAMPLE ster Sampling - Field Data (1.4 litre canister)	EP101-15X-SG 5X - Soil Vapour	EP101-IPA-SG opyl Alcohol - Soil Vapour	EP104 anent and Natural Gases - Full Suite
ID	time	oumpio ib	AIR - Cani	AIR - TO1	AIR - Isopr	AIR - Perr
EN2306447-001	22-Jun-2023 00:00	LFG01_220623 C12385	1	1	✓	1
EN2306447-002	22-Jun-2023 00:00	LFG02_220623 C14189	✓	✓	✓	✓
EN2306447-003	22-Jun-2023 00:00	LFG03_220623 C14229	✓	✓	✓	1
EN2306447-004	22-Jun-2023 00:00	LFG04_220623 C10768	✓	✓	✓	1
EN2306447-005	22-Jun-2023 00:00	QC01_220623 C5489_S	1	✓	1	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

DECLAN TENNENT

- *AU Certificate of Analysis - NATA (COA)	Email	declan@arcenvironmental.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	declan@arcenvironmental.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	declan@arcenvironmental.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	declan@arcenvironmental.com.au
- Chain of Custody (CoC) (COC)	Email	declan@arcenvironmental.com.au
- EDI Format - ENMRG (ENMRG)	Email	declan@arcenvironmental.com.au
- EDI Format - ESDAT (ESDAT)	Email	declan@arcenvironmental.com.au
JAY PARMANSCHE		
- A4 - AU Tax Invoice (INV)	Email	jay@arcenvironmental.com.au

	QA/QC Compliance A	Assessment to assist with	n Quality Review	
Work Order	: EN2306447	Page	: 1 of 4	
Client		Laboratory	: Environmental Division Newcastle	
Contact	: MR JAY PARMANSCHE	Telephone	: +61 2 4014 2500	
Project	: 2207292 FDL GWS Giants Audit	Date Samples Received	: 27-Jun-2023	
Site	:	Issue Date	: 04-Jul-2023	
Sampler	: DECLAN TENNENT	No. of samples received	: 5	
Order number	: 2207292	No. of samples analysed	: 5	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR					Evaluation	i: × = Holding time	breach ; 🗸 = Withi	in holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP101: VOCs by USEPA Method TO15r								
Gas Canister - ALS Stainless Steel Silonite (EP101-15X LFG01_220623 - C12385_S137, LFG03_220623 - C14229_S082, QC01_220623 - C5489_S082	:) LFG02_220623 - C14189_S190, LFG04_220623 - C10768_S267,	22-Jun-2023				04-Jul-2023	22-Jul-2023	✓
EP104: Light Hydrocarbons								
Gas Canister - ALS Stainless Steel Silonite (EP104) LFG03_220623 - C14229_S082		22-Jun-2023				07-Mar-2023	22-Jul-2023	✓
Gas Canister - ALS Stainless Steel Silonite (EP104) LFG01_220623 - C12385_S137, LFG04_220623 - C10768_S267,	LFG02_220623 - C14189_S190, QC01_220623 - C5489_S082	22-Jun-2023				29-Jun-2023	22-Jul-2023	✓
EP104: Permanent Gases							•	
Gas Canister - ALS Stainless Steel Silonite (EP104) LFG03_220623 - C14229_S082		22-Jun-2023				07-Mar-2023	22-Jul-2023	✓
Gas Canister - ALS Stainless Steel Silonite (EP104) LFG01_220623 - C12385_S137, LFG04_220623 - C10768_S267,	LFG02_220623 - C14189_S190, QC01_220623 - C5489_S082	22-Jun-2023				29-Jun-2023	22-Jul-2023	~
Sampling Quality Assurance								
Gas Canister - ALS Stainless Steel Silonite (CAN-001) LFG01_220623 - C12385_S137, LFG03_220623 - C14229_S082, QC01_220623 - C5489_S082	LFG02_220623 - C14189_S190, LFG04_220623 - C10768_S267,	22-Jun-2023				27-Jun-2023	21-Jun-2024	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: AIR	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification							
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Duplicate Control Samples (DCS)								
Permanent Gases and Light Hydrocarbons	EP104	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Duplicates (DUP)								
Permanent Gases and Light Hydrocarbons	EP104	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Permanent Gases and Light Hydrocarbons	EP104	2	7	28.57	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Permanent Gases and Light Hydrocarbons	EP104	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard	
VOCs in Air by USEPA TO15r - Extended Suite	EP101-15X	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Canister Sampling - Field Data	CAN-001	AIR	In house: Referenced to USEPA TO14 / TO15
VOCs in Air by USEPA TO15r - Extended	EP101-15X	AIR	In house: Referenced to USEPA TO15r Volatile Organic Compounds in Air by USEPA TO15. Extended Suite
Suite			
VOCs in Air by USEPA TO15r - Extended	EP101-15X-MV	AIR	USEPA TO15r VOCs in Air
Suite (mass/volume)			Results recalculated as mass/volume concentrations from volume/volume concentrations at a given
			temperature and pressure.
Permanent Gases and Light	EP104	AIR	Hydrocarbons by GC-FID, Permanent gases by GC-TCD.
Hydrocarbons			In house: Referenced to ASTM D1945, applied to permanent gases and light hydrocarbons (C1-C4) using
			packed/capillary GC.
Permanent Gases and Light	EP104-MV	AIR	Permanent Gases and Light Hydrocarbons - Results recalculated as mass/volume concentrations from molar
Hydrocarbons (mass/volume)			percentage composition at a given temperature and pressure.

CERTIFICATE OF ANALYSIS Page Work Order : EN2306447 : 1 of 9 Client : ARC ENVIRONMENTAL Laboratory : Environmental Division Newcastle Contact : MR JAY PARMANSCHE Contact : Katie Davis Address Address : 5/585 Maitland Road Mayfield West NSW Australia 2304 : Suite 103, 7 Jeffcott Street WEST MELBOURNE Telephone : 03 8383 1950 Telephone : +61 2 4014 2500 Project : 2207292 FDL GWS Giants Audit **Date Samples Received** : 27-Jun-2023 10:30 Order number : 2207292 Date Analysis Commenced : 07-Mar-2023 C-O-C number Issue Date : -----: 04-Jul-2023 18:27 Sampler : DECLAN TENNENT Site : -----Quote number : MEBQ/216/21 Primary work "Julula Accreditation No. 825

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

This Certificate of Analysis contains the following information:

: 5

: 5

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dale Semple	Analyst	Newcastle - Organics, Mayfield West, NSW
Daniel Junek	Senior Organic Chemist	Newcastle - Organics, Mayfield West, NSW
Daniel Junek	Senior Organic Chemist	Newcastle, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- CAN-001: Results for Pressure As Received are measured under controlled conditions using calibrated laboratory gauges. These results are expressed as an absolute pressure. Equivalent gauge pressures may be calculated by subtracting the Pressure Laboratory Atmosphere.
- CAN-001: Results for Pressure Gauge As Received are obtained from uncalibrated field gauges and are indicative only. These results may not precisely match calibrated gauge readings and may vary from field
 measurements due to changes in temperature and pressure.
- CAN-001: Results for Vacuum As Received are calculated from the pressures of the canister and laboratory atmosphere at the time of receipt, and are expressed as a measure of the vacuum remaining. A
 positive value indicates that the canister was below atmospheric pressure upon receipt.
- EP101: Particular samples required dilution due to the presence of high level hydrocarbons. Where applicable, LOR values have been adjusted accordingly.
- EP101: Results reported in mg/m³ are calculated from PPMV results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa.
- EP104: Results reported in mg/m³ are calculated from Mol% results based on a temperature of 25°C and atmospheric pressure of 101.3 kPa
- EP104: Sample canisters were received at sub-ambient pressures and required dilution in the laboratory prior to analysis. LOR values have been adjusted accordingly

Page : 3 of 9 Work Order : EN2306447 Client : ARC ENVIRONMENTAL Project : 2207292 FDL GWS Giants Audit

Sub-Matrix: SOIL GAS			Sample ID	LFG01_220623	LFG02_220623	LFG03_220623	LFG04_220623	QC01_220623
(Matrix: AIR)				C12385_S137	C14189_S190	C14229_S082	C10768_S267	C5489_S082
		Samplii	ng date / time	22-Jun-2023 00:00				
Compound	CAS Number	LOR	Unit	EN2306447-001	EN2306447-002	EN2306447-003	EN2306447-004	EN2306447-005
				Result	Result	Result	Result	Result
EP101: VOCs by USEPA Method TO15 (Calcu	ulated Conce	entration)						
Freon 12	75-71-8	0.250	mg/m³	<0.250	<0.250	<0.250	<0.250	<0.250
Chloromethane	74-87-3	0.100	mg/m³	<0.100	<0.100	<0.100	<0.100	<0.100
Freon 114	76-14-2	0.350	mg/m³	<0.350	<0.350	0.908	0.618	0.936
Vinyl chloride	75-01-4	0.0051	mg/m³	<0.0051	<0.0051	<0.0638	0.0238	<0.0638
Bromomethane	74-83-9	0.190	mg/m³	<0.190	<0.190	<0.190	<0.190	<0.190
Chloroethane	75-00-3	0.130	mg/m³	<0.130	<0.130	<0.130	<0.130	<0.130
Freon 11	75-69-4	0.280	mg/m³	<0.280	<0.280	<0.280	<0.280	<0.280
1.1-Dichloroethene	75-35-4	0.200	mg/m³	<0.200	<0.200	<0.200	<0.200	<0.200
Dichloromethane	75-09-2	0.170	mg/m³	<0.170	<0.170	<0.170	<0.170	<0.170
Freon 113	76-13-1	0.380	mg/m³	<0.380	<0.380	<0.380	<0.380	<0.380
1.1-Dichloroethane	75-34-3	0.200	mg/m³	<0.200	<0.200	<0.200	<0.200	<0.200
cis-1.2-Dichloroethene	156-59-2	0.0200	mg/m³	<0.0200	<0.0200	<0.100	<0.0200	<0.100
Chloroform	67-66-3	0.240	mg/m³	<0.240	<0.240	<0.240	<0.240	<0.240
1.2-Dichloroethane	107-06-2	0.200	mg/m³	<0.200	<0.200	<0.200	<0.200	<0.200
1.1.1-Trichloroethane	71-55-6	0.270	mg/m³	<0.270	<0.270	<0.270	<0.270	<0.270
Benzene	71-43-2	0.100	mg/m³	<0.100	<0.100	1.18	0.418	1.19
Carbon Tetrachloride	56-23-5	0.310	mg/m³	<0.310	<0.310	<0.310	<0.310	<0.310
1.2-Dichloropropane	78-87-5	0.230	mg/m³	<0.230	<0.230	<0.230	<0.230	<0.230
Trichloroethene	79-01-6	0.0054	mg/m³	<0.0054	<0.0054	<0.135	<0.0270	<0.135
cis-1.3-Dichloropropylene	10061-01-5	0.230	mg/m³	<0.230	<0.230	<0.230	<0.230	<0.230
trans-1.3-Dichloropropene	10061-02-6	0.230	mg/m³	<0.230	<0.230	<0.230	<0.230	<0.230
1.1.2-Trichloroethane	79-00-5	0.270	mg/m³	<0.270	<0.270	<0.270	<0.270	<0.270
Toluene	108-88-3	0.190	mg/m³	<0.190	<0.190	<0.190	<0.190	<0.190
1.2-Dibromoethane (EDB)	106-93-4	0.380	mg/m³	<0.380	<0.380	<0.380	<0.380	<0.380
Tetrachloroethene	127-18-4	0.340	mg/m³	<0.340	<0.340	<0.340	<0.340	<0.340
Chlorobenzene	108-90-7	0.230	mg/m³	<0.230	<0.230	<0.230	<0.230	<0.230
Ethylbenzene	100-41-4	0.220	mg/m³	<0.220	<0.220	0.282	<0.220	0.281
meta- & para-Xylene 108-3	8-3 106-42-3	0.430	mg/m³	<0.430	<0.430	<0.430	<0.430	<0.430
Styrene	100-42-5	0.210	mg/m³	<0.210	<0.210	<0.210	<0.210	<0.210
1.1.2.2-Tetrachloroethane	79-34-5	0.340	mg/m³	<0.340	<0.340	<0.340	<0.340	<0.340
ortho-Xylene	95-47-6	0.220	mg/m³	<0.220	<0.220	<0.220	<0.220	<0.220
4-Ethyltoluene	622-96-8	0.240	mg/m³	<0.240	<0.240	<0.240	<0.240	<0.240
Total Xylenes		0.650	mg/m³	<0.650	<0.650	<0.650	<0.650	<0.650
1.3.5-Trimethylbenzene	108-67-8	0.240	mg/m³	<0.240	<0.240	<0.240	<0.240	<0.240

Page : 4 of 9 Work Order : EN2306447 Client : ARC ENVIRONMENTAL Project : 2207292 FDL GWS Giants Audit

Sub-Matrix: SOIL GAS			Sample ID	LFG01_220623	LFG02_220623	LFG03_220623	LFG04_220623	QC01_220623
(Matrix: AIR)				C12385_S137	C14189_S190	C14229_S082	C10768_S267	C5489_S082
		Sampli	ng date / time	22-Jun-2023 00:00				
Compound	CAS Number	LOR	Unit	EN2306447-001	EN2306447-002	EN2306447-003	EN2306447-004	EN2306447-005
				Result	Result	Result	Result	Result
EP101: VOCs by USEPA Method TO15	(Calculated Conce	entration)	- Continued					
1.2.4-Trimethylbenzene	95-63-6	0.240	mg/m³	<0.240	<0.240	<0.240	<0.240	<0.240
1.3-Dichlorobenzene	541-73-1	0.300	mg/m³	<0.300	<0.300	<0.300	<0.300	<0.300
Benzylchloride	100-44-7	0.260	mg/m³	<0.260	<0.260	<0.260	<0.260	<0.260
1.4-Dichlorobenzene	106-46-7	0.300	mg/m³	<0.300	<0.300	<0.300	<0.300	<0.300
1.2-Dichlorobenzene	95-50-1	0.300	mg/m³	<0.300	<0.300	<0.300	<0.300	<0.300
1.2.4-Trichlorobenzene	120-82-1	0.370	mg/m³	<0.370	<0.370	<0.370	<0.370	<0.370
Hexachlorobutadiene	87-68-3	0.530	mg/m³	<0.530	<0.530	<0.530	<0.530	<0.530
Acetone	67-64-1	0.120	mg/m³	<0.120	<0.120	<0.120	<0.120	<0.120
Bromodichloromethane	75-27-4	0.340	mg/m³	<0.340	<0.340	<0.340	<0.340	<0.340
1.3-Butadiene	106-99-0	0.110	mg/m³	<0.110	<0.110	<0.110	<0.110	<0.110
Carbon disulfide	75-15-0	0.160	mg/m³	<0.160	<0.160	<0.160	<0.160	<0.160
2-Chlorotoluene	95-49-8	0.260	mg/m³	<0.260	<0.260	<0.260	<0.260	<0.260
1-Chloro-2-propene (Allyl	107-05-1	0.160	mg/m³	<0.160	<0.160	<0.160	<0.160	<0.160
chloride)								
Cyclohexane	110-82-7	0.170	mg/m³	<0.170	<0.170	4.54	0.791	4.61
Dibromochloromethane	124-48-1	0.430	mg/m³	<0.430	<0.430	<0.430	<0.430	<0.430
1.4-Dioxane	123-91-1	0.180	mg/m³	<0.180	<0.180	<0.180	<0.180	<0.180
Ethylacetate	9002-89-5	0.180	mg/m³	<0.180	<0.180	<0.180	<0.180	<0.180
trans-1.2-Dichloroethene	156-60-5	0.200	mg/m³	<0.200	<0.200	<0.200	<0.200	<0.200
Heptane	142-82-5	0.200	mg/m³	<0.200	<0.200	1.28	0.257	1.29
Hexane	110-54-3	0.180	mg/m³	<0.180	<0.180	43.0	1.12	43.3
Isooctane	540-84-1	0.230	mg/m³	<0.230	<0.230	13.4	2.64	13.5
Isopropyl Alcohol	67-63-0	0.120	mg/m³	0.715	0.147	0.432	0.260	0.280
2-Butanone (MEK)	78-93-3	0.150	mg/m³	<0.150	<0.150	<0.150	<0.150	<0.150
Methyl iso-Butyl ketone	108-10-1	0.200	mg/m³	<0.200	<0.200	<0.200	<0.200	<0.200
2-Hexanone (MBK)	591-78-6	0.200	mg/m³	<0.200	<0.200	<0.200	<0.200	<0.200
Propene	115-07-1	0.0900	mg/m³	<0.0900	<0.0900	<0.0900	<0.0900	<0.0900
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.180	mg/m³	<0.180	<0.180	<0.180	<0.180	<0.180
Tetrahydrofuran	109-99-9	0.150	mg/m³	<0.150	<0.150	<0.150	<0.150	<0.150
Bromoform	75-25-2	0.520	mg/m³	<0.520	<0.520	<0.520	<0.520	<0.520
Vinyl Acetate	108-05-4	0.180	mg/m³	<0.180	<0.180	<0.180	<0.180	<0.180
Vinyl bromide	593-60-2	0.220	mg/m³	<0.220	<0.220	<0.220	<0.220	<0.220
Ethanol	64-17-5	0.0900	mg/m³	<0.0900	<0.0900	<0.0900	<0.0900	<0.0900
Acetonitrile	75-05-8	0.0800	mg/m³	<0.0800	<0.0800	<0.0800	<0.0800	<0.0800

Page : 5 of 9 Work Order : EN2306447 Client : ARC ENVIRONMENTAL Project : 2207292 FDL GWS Giants Audit

Sub-Matrix: SOIL GAS			Sample ID	LFG01_220623	LFG02_220623	LFG03_220623	LFG04_220623	QC01_220623
(Matrix: AIR)				C12385_S137	C14189_S190	C14229_S082	C10768_S267	C5489_S082
		Samplii	ng date / time	22-Jun-2023 00:00				
Compound	CAS Number	LOR	Unit	EN2306447-001	EN2306447-002	EN2306447-003	EN2306447-004	EN2306447-005
				Result	Result	Result	Result	Result
EP101: VOCs by USEPA Method TO15 (Calculated Conce	entration)	- Continued					
Acrolein	107-02-8	0.110	mg/m³	<0.110	<0.110	<0.110	<0.110	<0.110
Acrylonitrile	107-13-1	0.110	mg/m³	<0.110	<0.110	<0.110	<0.110	<0.110
tert-Butyl alcohol	75-65-0	0.150	mg/m³	<0.150	<0.150	<0.150	<0.150	<0.150
2-Chloro-1.3-butadiene	126-99-8	0.180	mg/m³	<0.180	<0.180	<0.180	<0.180	<0.180
Di-isopropyl Ether	108-20-3	0.210	mg/m³	<0.210	<0.210	<0.210	<0.210	<0.210
Ethyl tert-Butyl Ether (ETBE)	637-92-3	0.210	mg/m³	<0.210	<0.210	<0.210	<0.210	<0.210
tert-Amyl Methyl Ether (TAME)	994-05-8	0.210	mg/m³	<0.210	<0.210	<0.210	<0.210	<0.210
Methyl Methacrylate	80-62-6	0.210	mg/m³	<0.210	<0.210	<0.210	<0.210	<0.210
1.1.1.2-Tetrachloroethane	630-20-6	0.340	mg/m³	<0.340	<0.340	<0.340	<0.340	<0.340
Isopropylbenzene	98-82-8	0.250	mg/m³	<0.250	<0.250	1.27	0.953	1.26
n-Propylbenzene	103-65-1	0.250	mg/m³	<0.250	<0.250	0.485	0.629	0.468
tert-Butylbenzene	98-06-6	0.270	mg/m³	<0.270	<0.270	<0.270	<0.270	<0.270
sec-Butylbenzene	135-98-8	0.270	mg/m³	<0.270	<0.270	<0.270	0.460	<0.270
2-isopropyltoluene	527-84-4	0.270	mg/m³	<0.270	<0.270	<0.270	<0.270	<0.270
n-Butylbenzene	104-51-8	0.270	mg/m³	<0.270	<0.270	<0.270	<0.270	<0.270
Naphthalene	91-20-3	0.100	mg/m³	<0.100	<0.100	<0.100	<0.100	<0.100
EP101: VOCs by USEPA Method TO15r								
Freon 12	75-71-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Chloromethane	74-87-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Freon 114	76-14-2	0.0500	ppmv	<0.0500	<0.0500	0.130	0.0884	0.134
Vinyl chloride	75-01-4	0.0020	ppmv	<0.0020	<0.0020	<0.0250	0.0093	<0.0250
Bromomethane	74-83-9	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Chloroethane	75-00-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Freon 11	75-69-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.1-Dichloroethene	75-35-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Dichloromethane	75-09-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Freon 113	76-13-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.1-Dichloroethane	75-34-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
cis-1.2-Dichloroethene	156-59-2	0.0050	ppmv	<0.0050	<0.0050	<0.0250	<0.0050	<0.0250
Chloroform	67-66-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.2-Dichloroethane	107-06-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.1.1-Trichloroethane	71-55-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Benzene	71-43-2	0.0300	ppmv	<0.0300	<0.0300	0.370	0.131	0.374
Carbon Tetrachloride	56-23-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500

Page : 6 of 9 Work Order : EN2306447 Client : ARC ENVIRONMENTAL Project : 2207292 FDL GWS Giants Audit

Sub-Matrix: SOIL GAS			Sample ID	LFG01_220623	LFG02_220623	LFG03_220623	LFG04_220623	QC01_220623
(Matrix: AIR)				C12385_S137	C14189_S190	C14229_S082	C10768_S267	C5489_S082
		Sampli	ng date / time	22-Jun-2023 00:00				
Compound	CAS Number	LOR	Unit	EN2306447-001	EN2306447-002	EN2306447-003	EN2306447-004	EN2306447-005
				Result	Result	Result	Result	Result
EP101: VOCs by USEPA Method TO	015r - Continued							
1.2-Dichloropropane	78-87-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Trichloroethene	79-01-6	0.0010	ppmv	<0.0010	<0.0010	<0.0250	<0.0050	<0.0250
cis-1.3-Dichloropropylene	10061-01-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
trans-1.3-Dichloropropene	10061-02-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.1.2-Trichloroethane	79-00-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Toluene	108-88-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.2-Dibromoethane (EDB)	106-93-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Tetrachloroethene	127-18-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Chlorobenzene	108-90-7	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Ethylbenzene	100-41-4	0.0500	ppmv	<0.0500	<0.0500	0.0650	<0.0500	0.0648
meta- & para-Xylene	108-38-3 106-42-3	0.100	ppmv	<0.100	<0.100	<0.100	<0.100	<0.100
Styrene	100-42-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.1.2.2-Tetrachloroethane	79-34-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
ortho-Xylene	95-47-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
4-Ethyltoluene	622-96-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.3.5-Trimethylbenzene	108-67-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.2.4-Trimethylbenzene	95-63-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.3-Dichlorobenzene	541-73-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Benzylchloride	100-44-7	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.4-Dichlorobenzene	106-46-7	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.2-Dichlorobenzene	95-50-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.2.4-Trichlorobenzene	120-82-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Hexachlorobutadiene	87-68-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Acetone	67-64-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Bromodichloromethane	75-27-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.3-Butadiene	106-99-0	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Carbon disulfide	75-15-0	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
2-Chlorotoluene	95-49-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1-Chloro-2-propene (Allyl	107-05-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
chloride)								
Cyclohexane	110-82-7	0.0500	ppmv	<0.0500	<0.0500	1.32	0.230	1.34
Dibromochloromethane	124-48-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.4-Dioxane	123-91-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Ethylacetate	9002-89-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500

Page : 7 of 9 Work Order : EN2306447 Client : ARC ENVIRONMENTAL Project : 2207292 FDL GWS Giants Audit

Sub-Matrix: SOIL GAS			Sample ID	LFG01_220623	LFG02_220623	LFG03_220623	LFG04_220623	QC01_220623
(Matrix: AIR)			C12385_S137	C14189_S190	C14229_S082	C10768_S267	C5489_S082	
	Sampling date / time		22-Jun-2023 00:00					
Compound	CAS Number	LOR	Unit	EN2306447-001	EN2306447-002	EN2306447-003	EN2306447-004	EN2306447-005
				Result	Result	Result	Result	Result
EP101: VOCs by USEPA Method TO15r - Co	ntinued							
trans-1.2-Dichloroethene	156-60-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Heptane	142-82-5	0.0500	ppmv	<0.0500	<0.0500	0.313	0.0628	0.316
Hexane	110-54-3	0.0500	ppmv	<0.0500	<0.0500	12.2	0.317	12.3
Isooctane	540-84-1	0.0500	ppmv	<0.0500	<0.0500	2.86	0.565	2.89
Isopropyl Alcohol	67-63-0	0.0500	ppmv	0.291	0.0600	0.176	0.106	0.114
2-Butanone (MEK)	78-93-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Methyl iso-Butyl ketone	108-10-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
2-Hexanone (MBK)	591-78-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Propene	115-07-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Tetrahydrofuran	109-99-9	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Bromoform	75-25-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Vinyl Acetate	108-05-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Vinyl bromide	593-60-2	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Ethanol	64-17-5	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Acetonitrile	75-05-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Acrolein	107-02-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Acrylonitrile	107-13-1	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
tert-Butyl alcohol	75-65-0	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
2-Chloro-1.3-butadiene	126-99-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Di-isopropyl Ether	108-20-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Ethyl tert-Butyl Ether (ETBE)	637-92-3	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
tert-Amyl Methyl Ether (TAME)	994-05-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Methyl Methacrylate	80-62-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
1.1.1.2-Tetrachloroethane	630-20-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Isopropylbenzene	98-82-8	0.0500	ppmv	<0.0500	<0.0500	0.258	0.194	0.257
n-Propylbenzene	103-65-1	0.0500	ppmv	<0.0500	<0.0500	0.0987	0.128	0.0952
tert-Butylbenzene	98-06-6	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
sec-Butylbenzene	135-98-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	0.0838	<0.0500
2-isopropyltoluene	527-84-4	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
n-Butylbenzene	104-51-8	0.0500	ppmv	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Naphthalene	91-20-3	0.0190	ppmv	<0.0190	<0.0190	<0.0250	<0.0190	<0.0250
EP104: Light Hydrocarbons								
Methane	74-82-8	0.005	Mol %	0.584	0.357	65.2	46.6	65.4

Page : 8 of 9 Work Order : EN2306447 Client : ARC ENVIRONMENTAL Project : 2207292 FDL GWS Giants Audit

Sub-Matrix: SOIL GAS			Sample ID	LFG01_220623	LFG02_220623	LFG03_220623	LFG04_220623	QC01_220623	
(Matrix: AIR)				C12385_S137	C14189_S190	C14229_S082	C10768_S267	C5489_S082	
		Sampli	ng date / time	22-Jun-2023 00:00					
Compound	CAS Number	LOR	Unit	EN2306447-001	EN2306447-002	EN2306447-003	EN2306447-004	EN2306447-005	
				Result	Result	Result	Result	Result	
EP104: Light Hydrocarbons - Continued									
Ethane	74-84-0	0.005	Mol %	<0.010	<0.010	<0.010	<0.010	<0.010	
Ethene	74-85-1	0.005	Mol %	<0.010	<0.010	<0.010	<0.010	<0.010	
Propane	74-98-6	0.005	Mol %	<0.010	<0.010	<0.010	<0.010	<0.010	
Butane	106-97-8	0.005	Mol %	<0.010	<0.010	<0.010	<0.010	<0.010	
EP104: Light Hydrocarbons (Calc Conc)									
Methane	74-82-8	33	mg/m³	3820	2330	426000	305000	428000	
Ethane	74-84-0	60	mg/m³	<120	<120	<120	<120	<120	
Ethene	74-85-1	55	mg/m³	<110	<110	<110	<110	<110	
Propane	74-98-6	90	mg/m³	<180	<180	<180	<180	<180	
Butane	106-97-8	120	mg/m³	<240	<240	<240	<240	<240	
EP104: Permanent Gases									
Carbon Dioxide	124-38-9	0.005	Mol %	4.25	3.33	12.2	10.1	12.2	
Carbon Monoxide	630-08-0	0.005	Mol %	<0.010	<0.010	<0.010	<0.010	<0.010	
Hydrogen	1333-74-0	0.005	Mol %	<0.010	<0.010	<0.010	<0.010	<0.010	
Helium	7440-59-7	0.005	Mol %	<0.010	<0.010	<0.010	<0.010	<0.010	
Oxygen	7782-44-7	0.10	Mol %	17.8	18.2	1.55	1.11	1.50	
Inert Gases (N2. Ar) by difference		0.10	Mol %	77.4	78.1	21.0	42.2	20.9	
EP104: Permanent Gases (Calc Conc)									
Carbon Dioxide	124-38-9	90	mg/m³	76500	59900	219000	182000	220000	
Carbon Monoxide	630-08-0	60	mg/m³	<120	<120	<120	<120	<120	
Hydrogen	1333-74-0	4	mg/m³	<8	<8	<8	<8	<8	
Helium	7440-59-7	8	mg/m³	<16	<16	<16	<16	<16	
Oxygen	7782-44-7	1310	mg/m³	234000	238000	20300	14600	19600	
Inert Gases (N2. Ar) by difference		1100	mg/m³	885000	894000	241000	483000	239000	
Sampling Quality Assurance									
Pressure - As received	PRESSURE	0.1	kPaa	93.9	98.3	97.3	86.2	97.6	
Pressure - Laboratory Atmosphere		0.1	kPaa	101	101	101	101	101	
Temperature as Received		0.1	°C	21.0	21.0	21.0	21.0	21.0	
Vacuum - As received		0.03	Inches Hg	2.18	0.88	1.18	4.49	1.09	
USEPA Air Toxics Method TO15r Surroga	tes								
4-Bromofluorobenzene	460-00-4	0.5	%	97.1	93.2	93.2	93.9	94.0	

Surrogate Control Limits

Sub-Matrix: SOIL GAS	Recovery Limits (%)					
Compound	CAS Number	Low	High			
USEPA Air Toxics Method TO15r Surrogates						
4-Bromofluorobenzene	460-00-4	60	140			

UPDATED COC

	Sample information								Tests Required									_	Comments				
Sample ID	Client Sample ID or inform ation	Depth	Date sampled	<u>Type of</u> <u>sample</u>	PID	BRIEF DESCRIPTION	CONTAINERS	TRH BTEX, PAH, METALS SUILEATE DU	NSW EPA SOIL CLASS SHORT SUITE	TRH BTEX, PAH, METALS	TRH C6-C9, BTEX	TRH, BTEX	ASBESTOS (PRESENCE ABSENCE)	PFAS								2	Provide as much information about the sample as you can
	LGF3	0.5	18/5/23	S	0.0	OVERLYING SANDY LOAM	1 JAR	1												1	1	1	
2	LGF3	1.0	18/5/23	S	0.0	CLAY CAPPING	1 JAR													-	1	1	
2	LGF3	1.5	18/5/23	5	0.0	CLAY CAPPING	1 JAR	1					1							1	-	-	
	LGF3	2.0	18/5/23	S	0.0	CLAY CAPPING	1 JAR						4.81						-	+	+	1	
6	LGF3	3.0	18/5/23	S	0.0	CLAY CAPPING	1 JAR													+	+	1 -	
5	LGF3	3.4	18/5/23	S	0.0	WASTE	1 JAR		1				1	1				-	-			S	et talen
\$	LGF3	4.0	18/5/23	S	10.7	WASTE	1 JAR, 1 PFAS JAR, 1 BAG	1						_				-	En	viro	nmer	ital C	JIVISION
0	LGF3	5.0	18/5/23	S	0.0	WASTE	1 JAR, 1 PFAS JAR, 1 BAG											-	SV	idne'	¥		
	LGF4	0.5	18/5/23	S	0.0	OVERLYING SANDY LOAM	1 JAR	1						-					- 1	Work	Orde	r Refe	arence
40	LGF4	1.0	18/5/23	S	0.0	SILTY CLAY	1 JAR												- >	Æ?	32,	318	<u> </u>
11	LGF4	1.5	18/5/23	S	0.0	CLAY WITH SOME WASTES	1 JAR																
	LGF4	2.0	18/5/23	S	0.0	CLAY WITH SOME WASTES	1 JAR, 1 PFAS JAR, 1 BAG	1		1-11			1							100	周日子	144	ANT_ = 111
	LGF4	3.0	18/5/23	S	0.0	CLAY CAPPING	1 JAR, 1 PFAS JAR, 1 BAG																
14	LGF4	4.0	18/5/23	S	0.0	CLAY CAPPING	1 JAR								-							$M_{\rm el}$	
IS	LGF4	5.0	18/5/23	S	0.0	WASTE	1 JAR, 1 PFAS JAR, 1 BAG	1					1	1			-				NYS.	bale 1	
4	LGF4	6.0	18/5/23	S	0.0	WASTE .	1 JAR, 1 PFAS JAR, 1 BAG						-	-			-					11	
17	LGF1	0.5	18/5/23	S	0.0	OVERLYING SANDY LOAM	1 JAR	1					1							10	1.000 00	0 079/	4 9656
31	LGF1	1.0	18/5/23	S	0.0	CLAY CAPPING	1 JAR	_	1			-	-	-	-		-		÷€	elephor	18: +5	1-2-87.04	
14	LGF1	1.5	18/5/23	S	0.0	CLAY CAPPING	1 JAR	1	-			-	1	-	1	Den	A	~		1902)	2018	1.200	110
26	LGF1	2.0	18/5/23	S	0.0	CLAY CAPPING	1 JAR	_				-		-	-	5	\sim		_	-	20	12112	A C
1	LGF2	0.5	18/5/23	S	0.0	SANDY GRAVEL	1 JAR	1		-		-		-	4		-+			20	rat	2	AC2 -
12	LGF2	1.0	18/5/23	S	0.0	CLAY SILT	1 JAR	-			-	-	-	-	1.11	-	-+	1241	-13:	12 car	Ne	16	stundenter-
25	LGF2	1.5	18/5/23	S	0.0	CLAY CAPPING	1 JAR	1		-	-+		+	-	11-12	1000	17.00	C.I.I	Be-	Da	111		
14	LGF2	2.0	18/5/23	S	0.0	WASTE?	1 JAR	-					+		100	1000	12 1	011	Ter	-			<u> </u>
- 15	SB1	0.5	18/5/23	S	0.0	OVERLYING SANDY LOAM	1 JAR	1	-	-					3.82		1	. 0	00	21	1	a	
46	SB1	1.0	18/5/23	S	0.0	GRAVELLY CLAY	1 JAR	1	-+	-	-+	-	+	-	£ 8 .	-+	-4		4	21	203	6	
21	SB1	1.3	18/5/23	S	0.0	HARD GRAVELS AND SILTS	1 JAR	-	-	-	-+		-	-+	100	100	15 1	201	_D4	1100	11.5	freed	
0	TRB1	8	18/5/23	S			1 JAR			-	1	-	\rightarrow	\rightarrow		-		\rightarrow					
24	QC1		18/5/23	S			1 JAR			-	-												
	QC2		18/5/23	S			1 JAR						-		-	-		\rightarrow		-			
30	RB1		18/5/23	W			1 x 200ml BOT. 2 x VOA		-	-		1		-+		-							SEND TO EXTERNAL LAP
								12	2	2	1	÷	11	2			-	-+	_				
Relinquist	ted by ((ARC Environ	imental			Received h	by (Ce	mnar	~ w)·	ALL	- 1		4			1.06		-				
Print Nam	e:		Jay Parman	sche			Prin	t Nan	ne:) ci	m		e			ooby	1. C-	ise 01. _1	ny:	dar. t		-	
Date & Tir	ne: :	19/05/20)23				Date	& Ti	ne: 1	TRI	1 647	N/3		antpl	es ke	Dec		DI OF /	AMD	ient (circle	one)	
Signature	:				_		Sig	natur	e:	7	So		16	Tra	nspor	ted b	y; Ha	at: and d	elive	it) / ired	appli	cable) ier)

Eurofins 23/5/23 3:12pm 5.1°C

Form: 392 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

019251

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521					
Melbourne	Geelong	Sydney	Canberra	Brisbane	Newcastle
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Dacre Street	1/21 Smallwood Place	1/2 Frost Drive
Dandenong South	Grovedale	Girraween	Mitchell	Murarrie	Mayfield West NSW 2
VIC 3175	VIC 3216	NSW 2145	ACT 2911	QLD 4172	Tel: +61 2 4968 8448
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 6113 8091	Tel: +61 7 3902 4600	NATA# 1261
NATA# 1261 Site# 1254	NATA# 1261 Site# 25403	NATA# 1261 Site# 18217	NATA# 1261 Site# 25466	NATA# 1261 Site# 20794	Site# 25079 & 25289

SW 2304 8448

www.eurofins.com.au

Perth

Welshpool

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

WA 6106

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 46-48 Banksia Road 35 O'Rorke Road Penrose, Auckland 1061

IANZ# 1327

Tel: +64 9 526 4551

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

Sample Receipt Advice

Company name:	ARC Environmental Pty Ltd
Contact name:	Jay Parmansche
Project name:	Not provided
Project ID:	Not provided
Turnaround time:	5 Day
Date/Time received	May 23, 2023 3:12 PM
Eurofins reference	992509

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Harry Bacalis on phone : or by email: HarryBacalis@eurofins.com Results will be delivered electronically via email to Jay Parmansche - jay@arcenvironmental.com.au. Note: A copy of these results will also be delivered to the general ARC Environmental Pty Ltd email address.

Global Leader - Results you can trust

Eurofins Environment Testing Australia Pty Ltd											Eurofins ARL Pty Ltd	Eurofins Environm	ent Testing NZ Ltd		
web: www.eurofins.com.au email: EnviroSales@eurofins.c		com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong ad 19/8 Lewa uth Grovedale VIC 3216 9 5000 Tel: +61 3 te# 1254 NATA# 12	Sydney an Street 179 Mag Girrawe NSW 21 8564 5000 Tel: +61 61 Site# 25403 NATA#	gowar R en 45 2 9900 1261 Sit	coad 8400 te# 1821	Canb Unit 1 Mitch ACT Tel: + 17 NATA	erra ,2 Dacr ell 2911 61 2 61 \# 1261	e Street 13 8091 Site# 25	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 466 NATA# 1261 Site# 2079	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 94 Site# 25079 & 25289	ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290
Co Ad	mpany Name: dress:	ARC Enviro 40 Heller St Brunswick V VIC 3055	nmental Pty	Ltd			O R P F	rder N eport hone: ax:	lo.: #:	99 03	92509 8 8383 1950		Received: Due: Priority: Contact Name:	May 23, 2023 3:12 May 30, 2023 5 Day Jay Parmansche	PM
Pro	oject Name:											E	Eurofins Analytical Ser	rvices Manager : H	arry Bacalis
		Sa	ample Detail	I		Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Moisture Set	Total Recoverable Hydrocarbons					
Sydney Laboratory - NATA # 1261 Site # 18217					Х	X	х	х	X						
Exte	rnal Laboratory						_								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	QC2	May 18, 2023		Soil	S23-My0060518	Х	X	х	х	Х					
Test Counts				1	1	1	1	1							

ARC Environmental Pty Ltd 40 Heller St Brunswick West VIC 3055

Attention:

Jay Parmansche

Report Project name Received Date **992509-S** May 23, 2023

Client Sample ID			002
Sample Matrix			Soil
			S23-
Eurofins Sample No.			My0060518
Date Sampled			May 18, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	53
TRH C10-C36 (Total)	50	mg/kg	53
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
втех		-	
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5

AC-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			QC2
Sample Matrix			Soil
Eurofins Sample No.			S23- My0060518
Date Sampled			May 18, 2023
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons	•	•	
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	112
p-Terphenyl-d14 (surr.)	1	%	110
Heavy Metals			
Arsenic	2	mg/kg	7.1
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	16
Copper	5	mg/kg	29
Lead	5	mg/kg	41
Mercury	0.1	mg/kg	0.2
Nickel	5	mg/kg	14
Zinc	5	mg/kg	87
Sample Properties			
% Moisture	1	%	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time												
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 27, 2023	14 Days												
- Method: LTM-ORG-2010 TRH C6-C40															
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 27, 2023	14 Days												
- Method: LTM-ORG-2010 TRH C6-C40															
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 27, 2023	14 Days												
- Method: LTM-ORG-2010 TRH C6-C40															
BTEX	Sydney	May 27, 2023	14 Days												
- Method: LTM-ORG-2010 BTEX and Volatile TRH															
Polycyclic Aromatic Hydrocarbons	Sydney	May 27, 2023	14 Days												
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water															
Metals M8	Sydney	May 27, 2023	28 Days												
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS															
% Moisture	Sydney	May 24, 2023	14 Days												
- Method: LTM-GEN-7080 Moisture															
Eurofins Environment Testing Australia Pty Ltd												Eurofins ARL Pty Ltd	Eurofins Environm	nent Testing NZ Ltd	
---	--------------------------------------	---	--	--	---	--	--------------------	--	--------------	--------------------------------	---	---	--	---	---
web: www.eurofins.com.au email: EnviroSales@eurofins.com			Melbourne 6 Monterey Roz Dandenong Sot VIC 3175 Tel: +61 3 8564 NATA# 1261 Si	Geelong ad 19/8 Lewa uth Grovedale VIC 3216 5000 5 5000 Tel: +61 3 te# 1254 NATA# 12	Sydney lan Street 179 Mag Girrawe NSW 21 8564 5000 Tel: +61 61 Site# 25403 NATA#	Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 J3 NATA# 1261 Site# 182		Canberra Unit 1,2 Dacre Stree Mitchell ACT 2911)0 Tel: +61 2 6113 809 18217 NATA# 1261 Site# 2		re Stree 13 809 Site# 2	Brisbane Newcastle t 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West N QLD 4172 Tel: +61 2 4968 1 Tel: +61 7 3902 4600 NATA# 1261 55466 NATA# 1261 Site# 20794 Site# 20798 Site# 20798 24	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 14 Site# 25079 & 25289	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290
Co Ad Pro	mpany Name: dress: bject Name:	ARC Enviro 40 Heller St Brunswick V VIC 3055	nmental Pty : Vest	Ltd			O R Pi Fi	rder I eport hone: ax:	No.: #:	(992509 03 8383 1950	-	Received: Due: Priority: Contact Name:	May 23, 2023 3:12 May 30, 2023 5 Day Jay Parmansche	PM
											1	E	urofins Analytical Ser	vices Manager : H	arry Bacalis
		S	ample Detail			olycyclic Aromatic Hydrocarbons	Vietals M8	BTEX	Noisture Set	Total Recoverable Hydrocarbons					
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	7		Х	X	Х	Х	Х	_				
Exte	rnal Laboratory										-				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	QC2	May 18, 2023		Soil	S23-My0060518	Х	х	х	х	х					
Test	Counts					1	1	1	1	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		-				
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		i				
Heavy Metals					_	
Arsenic	mg/kg	< 2		2	Pass	
	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
	mg/kg	< 5		5	Pass	
	mg/kg	< 5		 5	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons						
IRH C6-C9	%	96		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	119		70-130	Pass	
TRH C6-C10			%	99		70-130	Pass	
TRH >C10-C16			%	119		70-130	Pass	
LCS - % Recovery				•			•	
BTEX								
Benzene			%	105		70-130	Pass	
Toluene			%	94		70-130	Pass	
Ethylbenzene			%	94		70-130	Pass	
m&p-Xylenes			%	98		70-130	Pass	
o-Xylene			%	104		70-130	Pass	
Xylenes - Total*			%	100		70-130	Pass	
LCS - % Recovery				•		•	•	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
Naphthalene			%	87		70-130	Pass	
LCS - % Recovery				•		•		
Polycyclic Aromatic Hydrocarbons	5							
Acenaphthene			%	106		70-130	Pass	
Acenaphthylene			%	106		70-130	Pass	
Anthracene			%	103		70-130	Pass	
Benz(a)anthracene			%	102		70-130	Pass	
Benzo(a)pyrene			%	106		70-130	Pass	
Benzo(b&j)fluoranthene			%	103		70-130	Pass	
Benzo(g.h.i)perylene			%	108		70-130	Pass	
Benzo(k)fluoranthene			%	113		70-130	Pass	
Chrysene				92		70-130	Pass	
Dibenz(a,h)anthracene			%	97		70-130	Pass	
Fluoranthene				104		70-130	Pass	
Fluorene				106		70-130	Pass	
Indeno(1.2.3-cd)pyrene				98		70-130	Pass	
Naphthalene			%	103		70-130	Pass	
Phenanthrene			%	100		70-130	Pass	
Pyrene			%	106		70-130	Pass	
LCS - % Recovery				•		•		
Heavy Metals								
Arsenic			%	101		80-120	Pass	
Cadmium			%	103		80-120	Pass	
Chromium			%	103		80-120	Pass	
Copper			%	101		80-120	Pass	
Lead			%	106		80-120	Pass	
Mercury			%	102		80-120	Pass	
Nickel			%	101		80-120	Pass	
Zinc			%	102		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1		_		
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	S23-My0067691	NCP	%	72		70-130	Pass	
TRH C10-C14	S23-My0060489	NCP	%	129		70-130	Pass	
TRH C6-C10	S23-My0067691	NCP	%	77		70-130	Pass	
TRH >C10-C16	S23-My0058557	NCP	%	115		70-130	Pass	
Spike - % Recovery				1		1		
BTEX	I			Result 1				
Benzene	S23-My0067691	NCP	%	82		70-130	Pass	
Toluene	S23-My0067691	NCP	%	72		70-130	Pass	
Ethylbenzene	S23-My0067691	NCP	%	76		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
m&p-Xylenes	S23-My0067691	NCP	%	81			70-130	Pass	
o-Xvlene	S23-Mv0067691	NCP	%	83			70-130	Pass	
Xvlenes - Total*	S23-Mv0067691	NCP	%	82			70-130	Pass	
Spike - % Recovery					<u> </u>				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S23-My0067691	NCP	%	82			70-130	Pass	
Spike - % Recovery					1				
Heavy Metals				Result 1					
Arsenic	S23-My0062640	NCP	%	104			75-125	Pass	
Cadmium	S23-My0062640	NCP	%	108			75-125	Pass	
Chromium	S23-My0062640	NCP	%	104			75-125	Pass	
Copper	S23-My0062640	NCP	%	98			75-125	Pass	
Lead	S23-My0062640	NCP	%	103			75-125	Pass	
Mercury	S23-My0062640	NCP	%	107			75-125	Pass	
Nickel	S23-My0062640	NCP	%	100			75-125	Pass	
Zinc	S23-My0062640	NCP	%	90			75-125	Pass	
Test	I ab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
1631	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate					-		1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		_	
TRH C6-C9	S23-My0060498	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S23-My0049773	NCP	mg/kg	2300	1700	29	30%	Pass	
TRH C15-C28	S23-My0049773	NCP	mg/kg	5700	4500	23	30%	Pass	
TRH C29-C36	S23-My0049773	NCP	mg/kg	300	270	8.7	30%	Pass	
TRH C6-C10	S23-My0060498	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S23-My0049773	NCP	mg/kg	4500	3400	27	30%	Pass	
TRH >C16-C34	S23-My0049773	NCP	mg/kg	3900	3200	22	30%	Pass	
TRH >C34-C40	S23-My0049773	NCP	mg/kg	250	240	6.6	30%	Pass	
Duplicate				Deputed	Desult 0				
BIEX	500 M-0060408		~~~//ca	Result	Result 2	RPD .1	20%	Deee	
Taluana	S23-IVIY0060498	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylhonzono	S23-Wy0060498		mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	S23-Wy0060498		mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	S23-My0060498		mg/kg	< 0.2	< 0.2		30%	Pass	
Xylenes - Total*	S23-My0060498		ma/ka	< 0.1	< 0.1		30%	Pass	
	023-11190000490	NOI	iiig/kg	< 0.5	< 0.5		5078	1 435	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S23-Mv0060498	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	020 1190000 100	1101	iiig/itg	4 0.0	V 0.0	1	0070	1 400	
Polycyclic Aromatic Hydrocarbons	6			Result 1	Result 2	RPD			
Acenaphthene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate											
Polycyclic Aromatic Hydrocarbons	Result 1	Result 2	RPD								
Phenanthrene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Pyrene	S23-My0060130	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass			
Duplicate											
Heavy Metals				Result 1	Result 2	RPD					
Arsenic	S23-My0060624	NCP	mg/kg	170	160	1.0	30%	Pass			
Cadmium	S23-My0060624	NCP	mg/kg	2.9	3.1	7.6	30%	Pass			
Chromium	S23-My0060624	NCP	mg/kg	18	17	6.6	30%	Pass			
Copper	S23-My0060624	NCP	mg/kg	2000	2100	3.3	30%	Pass			
Lead	S23-My0060624	NCP	mg/kg	980	1000	5.6	30%	Pass			
Mercury	S23-My0060624	NCP	mg/kg	1.8	2.0	10	30%	Pass			
Nickel	S23-My0060624	NCP	mg/kg	16	16	4.1	30%	Pass			
Zinc	S23-My0060624	NCP	mg/kg	280	290	2.0	30%	Pass			
Duplicate											
Sample Properties				Result 1	Result 2	RPD					
% Moisture	S23-My0060503	NCP	%	9.0	9.1	<1	30%	Pass			

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Amy Meunier
Raymond Siu
Roopesh Rangarajan
Fang Yee Tan

Analytical Services Manager Senior Analyst-Volatile Senior Analyst-Organic Senior Analyst-Metal

Glenn Jackson Managing Director

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix F: Field Sheets

Project Name:		Gws	LIANTS			Date:		25/05/23	25/05/23		
Project Ni	umber:	220	1292			Field Sta	ff:	JSP			
Site Address:								Equipment:	GAJOOO		
Weather Conditions:		FILE,	oudreast	Barome Pressur	etric re (mb):	1015		Relative Pressure (Pa):	0.02 mb.		
Borehole ID:		LFG03		Bore Co	Bore Condition:			Max Gas Flow Rate (Take before gas readings):	- 0 0 L/hr		
Depth to Water (Take after gas readings):		X		Rainfall past 24 ho	(mm in ours):	POLE					
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Com	ments		
Ambient	15:45	0	0.2	0.0	20.9	78.8	0				
Bore	15:47	7	62.8	8.8	0-2	28.1	0				
	15:48	3	63.1	8.9	0 - 1	28.0	0				
	15:49	7	63-1	8.8	0-1	28.0	0				
	15:50	7	63.1	8.9	0.0	28.0	0				
	15.51	7	63-1	8-9	0.0	28.0	0				
Maximum	-										

Project Name:	hus httpart	S	Date:	25/05/25	
Project Number:	2207292		Field Staff:	JSP	
Site Address:				Equipment:	GA JOOO
Weather Conditions:	FINE, WEREAST	Barometric Pressure (mb):	1015	Relative Pressure (Pa):	-0-14
Borehole ID:	LFQ04	Bore Condition:	Geod	Max Gas Flow Rate (Take before gas readings):	- O-1 Ulhr (-0-2 Uhr alter)
Depth to Water (Take after gas readings):	~	Rainfall (mm in past 24 hours):	NONE.		

	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Comments
Ambient	15:34	0	Q · I	0.0	20.9	78.9	0	
Bore	15-36	I	87.8	5-6	0.2	5.9	0	
	15:37	Ì	83-7	5-6	0.0	5.5	0	
	15-38	0	88-9	5-6	0.0	5-3	0	
	15-39	0	89-1	5.6	0.0	5-3	0	
	15:40	0	89-1	5-6	60	5.3	0	
	-							
Maximum								

5

Project Na	ame:	aus	CIANTS.			Date:		25/05/23	
Project N	umber:	220-	1292			Field Sta	ff:	JSP.	
Site Addre	ess:							Equipment:	GA JODO
Weather C	Conditions:	FINE	OVERCAST	Barome Pressur	Barometric Pressure (mb):			Relative Pressure (Pa):	- 0.12
Borehole ID:		LFGOI		Bore Co	Bore Condition:			Max Gas Flow Rate (Take before gas readings):	5.1 c/h.
Depth to Water (Take after gas readings):		-		Rainfall past 24 ho	(mm in ours):	Onn			(O. I LI be after)
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Comi	nents
Ambient	15:03	0	0.1	0.0	20.9	79.0	0		
Bore	15:05	0	6.1	6-1	20.8	79-1	0		
	15:06	9	2.5	6.5	17.2	73.5	Ø		
	15:07	7	6-2	7.5	15-1	71.3	0		
	15:08	I	2.1	1.7	14.9	75.5	Ô		×.
	15:09	0	1.2	6-6	16-6	75.8	0		
1	15:10	0	08	5.6	17.3	75.9	0		
	15:11	D	0.7	5.0	18-4	76.0	0		
	15:12	Ò	0-6	4.6	18-7	76-1	0		
Maximum	-								

Project Na	ame:	6~5	heart	5		Date:		25/05/23		
Project Nu	umber:	220-	1292			Field Sta	ff:	358		
Site Addre	ess:							Equipment:	CLASON	
Weather Conditions:		FINE	FINE, OUDREAST		Barometric Pressure (mb):		-	Relative Pressure (Pa):	-0.12 mb.	
Borehole ID:		LFGOZ		Bore Co	Bore Condition:			Max Gas Flow Rate (Take before gas readings):	-0.20 L/h,	
Depth to Water (Take after gas readings):		_		Rainfall past 24 ho	l (mm in purs):	Nore.				
	Time (start)	СО (ррт)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Comments		
Ambient	15:24	0	0-1	00	20.9	79-0	0			
Bore	15.26	29	0 - 1	6-5	(3.5	79.9	0		8	
	15-27	I.	0-1	6-6	13-4	79.9	6			
	15:28	()	0-1	6-6	13.44	79.9	0			
	15:29	Ĩ	6 - (6.6	13-4	79.9	0			
	15:30	1	0-1	6-6	13.4	79.9	0			
Maximum	-									

Project Na	ame:	Gws	GIAN	15	Date:				
Project Nu	umber:	2207	+292			Field Sta	aff:		
Site Addre	ess:								
Weather C	onditions:	SUNT	-7	Barome Pressur	etric re (mb):	10 21 . 5	Rel (Pa		
Borehole	ID:	LFG	-3	Bore Co	ondition:	9000	/ MO rouve	2 Max Rat read	
Depth to after gas read	Water (Take dings):			Rainfall past 24 ho	(mm in ours):	NIL			
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)		
Ambient	11.05	0	0	0	20.8	79.2	0		
Bore	11/10	0	63.9	12.6	0.4	22.9	1		
	11.12	1	63.9	12.5	0.4	23-3	. 1		
	,11:17	. 1	62-5	12:3	0.7	24.5	1		
	11:20	1	83-1	12.6	0.5	23-7	7	H25	
	11.22	0	64.3	13.2	0.5	21.8	9		
	11.25	0	65.5	13.2	0.5	20.8	9		
-	128								
Maximum									

Project Na	ame:	Gws	GIAN	15	Date:				
Project Nu	umber:	2207	7292			Field Sta	aff:		
Site Addre	SS:								
Weather C	onditions:	SUNI	-7	Barome Pressu	etric re (mb):	10 21 . 9	Rel (Pa		
Borehole ID:		LF9-3		Bore Co	Bore Condition:		GOOD/MORONA		
Depth to Water (Take after gas readings):				Rainfall past 24 ho	(mm in ours):	NIL			
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)		
Ambient	11.05	0	0	0	20.8	79.2	0		
Bore	11/10	0	63.9	12.6	0.4	22.9	1		
	11.12	1	63.9	12.5	0.4	23-3			
	,11:17	. 1	62-5	12:3	0.7	24.5	1		
	11:20	1	83-1	12.6	0.5	23-7	7	H25	
	11.22	0	64.3	13.2	0.5	21.8	9		
	11.25	0	65.5	13.2	0.5	20.8	9		
	128								
Maximum									

Page 1 of 1

• -

Gws	GIAM	75		Date:			
22	07292			Field St	aff:		
Sur	~~~~	Barom Pressu	etric re (mb):	1021.	1021.85		
LF	94	Bore C	ondition:	900F	GOOP		
		Rainfal past 24 ho	l (mm in burs):	NON	E		
CO (ppm) √	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v) √	H2S (ppm)		
1	Ø	0.0	20.7	79.2	0		
1	67.7	9.8	0.1	22.4	1		
2	66.9	9.9	0.0	23.5	3		
1	63.4	10.0	0.3	26.8	5		
2	57.9	10.3	0.3	32.0	. 7		
2	54.6	10.4	0.3	35.2	7		
2	46.8	10.7	0.4	43-8	8		
						FL	
2	67.7	10.7	20.7	79.2	7		

Project N	ame:	Gws	GIAM	75		Date:			
Project N	lumber:	220	292560	Field St	Field Staff:				
Site Add	ress:								
Weather Conditions:		Sur	~N7	Barome Pressu	Barometric Pressure (mb):		1021.85		
Borehole	Borehole ID:		LFG 4		Bore Condition:		GOOP		
Depth to after gas rea	Water (Take dings):			Rainfal past 24 ho	l (mm in ours):	NON	E		
	Time (start)	CO (ppm) √	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v) √	H2S (ppm)		
Ambient	10.17	1	Ø	0.0	20.7	79.2	6		
Bore	10.20	1	67.7	9.8	0.1	22.4	1		
	1022	2	66.9	9.9	0.0	23.5	3		
	10.25	1	63.4	10.0	0.3	26.8	5		
	10.2.8	2	57.9	10.3	0.3	32.0	. 7		
	10:31	2	54.6	10.4	0.3	35.2	7		
	10.35	2	46.8	10.7	0.4	43-8	8		
								FL	
Mavimum									
wiaxiiiiuiii		2	67.7	10.7	20.7	79.2	7		

6/23 16 AM Equipment: 000242 **Relative Pressure** - 0.04 mb Gas Flow Max Rate (Take before gas + 0. h L readings): AFTON LLh Comments OW AFTER O.OL/h

	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	02 (%v/v)	Balance (%v/v)	H2S (ppm)	
Ambient	10.44	0	0	0	20.9	79.1	0	
Bore	10.48	1	0.0	5.5	16.7	78	D	
	10.50	I	0.0	5.4	16.7	78	0	
	10:53	1	0.0	4.6	17.6	77.8	0	
	10.58	(0.0	3.1	19.1	77.9	0	
	10.59	1	0.0	2.7	19.3	78.0	D	
Maximum		1	0	5.5	19.3	79	0	

Page 1 of 1

after	gas	readings):	
		A CONTRACTOR OF THE REAL OF	

Froject	Name:	Gws	GIAN	271		Date:		
Project	Number:	770	7797			Field St	aff.	
Site Ac	Idress:		1016					
Weath	er Conditions:	SU	NNY	Barom Pressi	etric Jre (mb):	1021.09		
Boreho	ole ID:	LFC	q - 1	Bore C	Condition:	900D		
Depth after gas r	to Water (Tak readings):	re		Rainfa past 24 h	ll (mm in iours):	NIL		
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	
Ambient	11.34	0	0	0	21.5	78.5	0	
Bore	11.35	0	1.7	5.3	17.0	74.0	0	
	11:42	0	0.6	5.7	18.4	75.4	0	
	11:44	1	0.5	4.5	19.2	75.4	0	
	11:48	0	0.3	3.3	20.7	75.7	0	
	11.51	0	0.3	2.9	20.5	76.1	6	
Maximum								
						A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY		A COLOR ST ALL ST

Page 1 of 1

Vapour Monitoring Field Sheet - Summa Canisters Project Information								
Date: 22/06/23		Site: WWG L.O.E						
Vapour Monitoring Well ID.	Fhol	Project No: 2207262						
Sample ID: LELOI 22	0623	Laboratory Lead: A/						
Sampler name: DT								
	Equipment	Information						
Pump used (type/ID): H	Pump	Rotometer/Flow Meter (type/ID):						
Multi-Gas Meter (type/ID)	LA-5000	Timer ID: (-p	hore					
PID (type/lamp/ID): 4x-6	900	LEL (Type/ID)	: We-6	000				
	Leak T	esting						
Leak Test Performed (2N):	res							
Method: Isopropy/								
Time: 12.56								
Results*: 55.6		* Refe	rence additi	onal field sheets, if necessary				
	Purg	ging						
Planned Target Flow Rate (ml/min): 60 ml/ ~	Planned Purg	e Volume	e(L) 1000 ~L				
Purge Start Time: 12.	26	Purge Stop T	ime:					
Purge Rate (ml/min)	Com	Total Purge Volume:						
Summe Tuner	ALS 1.4 L MAR							
Summa Type:	555137							
Flow Controller ID:	12385							
Canister ID:	12.56							
Start Time:	- 20							
Start Pressure:	60ml							
Flow Rate (ml/min)	1.21							
Stop Time:	-5							
Stop Pressure:	~1.21							
Total Volume Collected:	Field Re	adings						
PID (ppm): () · 0	Time: 12.47	CH4 (ppm):	0.2	Time: 12.47				
PID (ppm): 0-0	Time: W22	CH4 (ppm):	0.4	Time: 1.22				
LEL (%): 0	Time: 12.47	CO2 (ppm):	4.6	Time: 12.47				
LEL (%): 0	Time: (. L 2	CO2 (ppm):	3.9	Time: 1.22				
Oxvgen (%): 17. K	Time: 12,47	CO (OPM !	1	12.47				
Oxygen (%): 18.8	Time: 1.2.2	CO(pm)	1	1.22				
	Weather In	formation	rometric I	Pressure: 1017				
Wind Speed/Direction: ()	Outside Temperature: 11/10 Barometric Pressure: 10/1 Wind Speed/Direction: 10 Image: 10							
Significant rain within 12 hours of sampling? Yes								
Additional Notes (e.g. condition of well, changes observed, photo notes, etc.)								
N/A.								
Notos: Flow rate through sa	ample train should be	approximately	v 100mL/r	min				

Purging only to include bore sand pack if new installation.

Vapour Monitoring Field Sheet - Summa Canisters							
Date: 22/00/2003	Project mi	Citer Gid Lin	10. F.	NSIN/			
Vanour Monitoring Wall ID. 12	102						
	200	Project No: 220/292					
Sample ID: LFAUELLI	0623	Laboratory Used:	ALS				
Sampler name: D1	Equipment I	Information					
Pump used (type/ID): H / P	ump:	Rotometer/Flow M	leter (type/ID)	:			
Multi-Gas Meter (type/ID)	15000	Timer ID: 1-P	hohe				
PID (type/lamp/ID): 4k-6a	00	LEL (Type/ID): 4)	-600V				
	Leak Te	esting					
Leak Test Performed (1/N):	Yes						
Method: 150propy1							
Time: 3.31	and the second sec						
Results*: 177.5		* Reference	additional field	sheets, if necessary			
	Purg	ing		ensetty a neocoodity			
Planned Target Flow Rate (ml/min): 60	Planned Purge Vo	olume (L)	-1000-2			
Purge Start Time: 3.3	7	Purge Stop Time:	4.0	5			
Purge Rate (ml/min) 60	Samr	Total Purge Volun	me: ~10	DoenL			
Current Turn	ALCIUL Mar						
Summa Type:	(SCIGIO						
Flow Controller ID:	1419.9						
Canister ID:	7 27						
Start Time:	-20						
Start Pressure:	-30						
Flow Rate (ml/min)	60						
Stop Time:	4.05						
Stop Pressure:	-5						
Total Volume Collected:	~1.3L	a dia an					
		adings		115			
PID (ppm):	Time:	CH4 (ppm):	C Time	14.01			
PID (ppm):	Time:	CH4 (ppm): 0:	Time	375			
LEL (%):	Time:	CO2 (ppm): 3 ·	Time	(1.0)			
LEL (%):	Time:	CO2 (ppm): 5.	4 Time	2.25			
Oxygen (%): 18.7	Time: 3.35	CO (ppm)		4.15			
Oxygen (%): (°1.6	Time: 4.69	(o (ppm) 1		4.08			
Outside Temperature: 13	Outside Temperature: 13% Barometric Pressure: 1016						
Wind Speed/Direction: 7 km/L NW Humidity: 74 /							
Significant rain within 12 hou	urs of sampling?: Va	vell changes obs	served phot	o notes, etc.)			
Additional Notes	e.g. condition of w	en, changes obs	served, priot	0.10.00, 0.0.)			
	-						
Notes: Flow rate through sa Purging only to include	ample train should be bore sand pack if new	approximately 10 installation.	0mL/min.				

Vapour Monitoring F	Field Sheet - Su	mma Can	isters	ENVIRONMENTAL										
Data 22/06/2073	Project In	formation	6 mate	(A F										
Date: Le to tor	FLOB	Site: GWS	200720	2.0.0										
Vapour Monitoring Well ID: P	July J													
Sample ID: LFL03_20062	*	Laboratory Used: AU												
Sampler name: Derlen	Equipment	Information												
Pump used (type/ID); H If	mD.	Rotometer/Flow Meter (type/ID)												
Multi-Gas Meter (type/ID) 64	15000	Timer ID: 1-	phone	(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
PID (type/lamp/ID): 6x-6000	2	LEL (Type/ID): Gx-601	50										
	Leak T	esting												
Leak Test Performed (Ø/N): 12														
Method: Isopropy														
Time: 1.58 pm														
Results*: 52.8 * Reference additional field sheets, if necessar														
	Purç	jing												
Planned Target Flow Rate (ml/min): 60ml/mil	Planned Pur	ge Volum	e(L) ~ (000~L										
Purge Start Time: 1,5	bom	Purge Stop	Time:											
Purge Rate (ml/min)	bomh / min	Total Purge Volume: 1000 mL												
	Sam													
Summa Type:	ALS LAL PULL	ALI I.YLI	una											
Flow Controller ID:	035.082	053082	-											
Canister ID:	14229	5489	5489											
Start Time:	1.50 pm													
Start Pressure:	-30	11												
Flow Rate (ml/min)	~60 ml/mik	"	4											
Stop Time:	2.37pm	"	11	-										
Stop Pressure:	-4	"	4											
Total Volume Collected:	~1.32	1/	"1											
	Field Re	adings	(0 4	- 0										
PID (ppm):	Time: 1.39	CH4 (ppm):	69.8	Time: (.39										
PID (ppm):	Time: 2.59	CH4 (ppm):	73.6											
LEL (%): ¥-	Time: 1.39	CO2 (ppm):	12.2	Time: 1-31										
LEL (%): -	Time: 2.39	CO2 (ppm):	13.0	Time: 2.39										
Oxygen (%): 1,2	Time: (. 31	W (1pm)	2	T.me: 1.39										
Oxygen (%): 0-7	Time: 2.39	(O (ppm)	1	Time: 2.39										
Outoido Temperature: 14	Weather In	formation	arometric	Pressure: 1617										
Wind Speed/Direction: 0	km/L	Hu	umidity: L											
Significant rain within 12 hou	irs of sampling?: Yes													
Additional Notes	(e.g. condition of w	ell, changes	observe	d, photo notes, etc.)										
Notes: Flow rate through sa	mple train should be	approximatel	v 100mL/	min										

Purging only to include bore sand pack if new installation.

Vapour Monitoring	Field Sheet - Su	umma Canisters	ENVIRONMENTAL							
Data: 22/06/2023	Project ii	auls Giants	C.D.E, NSW							
Vapour Maniforing Well ID	57.04	Project No: 2207292								
Sample ID. 156.04 220	427	Loborton Upod. AL								
Sample ID: NT NO (Laboratory Used: 1	2							
Sampler name: yeum	Equipment	Information								
Pump used (type/ID): H	Pany	Rotometer/Flow Meter	(type/ID):							
Multi-Gas Meter (type/ID)	4A5000	Timer ID: 1-Phose								
PID (type/lamp/ID): 4x-1	6000	LEL (Type/ID): 4x-60	00							
	Leak 1	resting								
Leak Test Performed (Y/N):	Yes									
Method: (sopropp)			3							
Time: 3.03										
Results*: 176.3		* Reference addit	ional field sheets, if necessary							
	Pur	ging								
Planned Target Flow Rate (ml/min): 60	Planned Purge Volume	e (L) - 1000 mL							
Purge Start Time: 3.01		Purge Stop Time:	3.24							
Purge Rate (ml/min) 60	>	Total Purge Volume:	~ 1000~L							
	Sam	pling								
Summa Type:	ALS 1.4 L Mini									
Flow Controller ID:	555267									
Canister ID:	(0768									
Start Time:	3:01									
Start Pressure:	-30									
Flow Rate (ml/min)	66.									
Stop Time:	-5									
Stop Pressure:	3.24									
Total Volume Collected:	~1.3L									
	Field Re	eadings								
PID (ppm):	Time: 3.60	CH4 (ppm): 47.9	Time: 3.00							
PID (ppm):	Time: 3.27	CH4 (ppm): 48.2	Time: 3.27							
LEL (%):	Time: 3.00	CO2 (ppm): 10.6	Time: 3.00							
LEL (%):	Time: 3.27	CO2 (ppm): 10.6	Time: 3.77							
Ovvgen (%): 0-1	Time: 3.00	co (rpm): 2	3.00							
Owgen (%): 0.1	Time: 3.27	(6 (ppm):	3.27							
	Weather In	formation	Processies in the							
Outside Temperature: 14	C ANAL	Humidity: 77	57.							
Significant rain within 12 hou	irs of sampling?: Ye	20	-1							
Additional Notes	(e.g. condition of w	vell, changes observed	d, photo notes, etc.)							
The second second	male train should be	approvimately 100ml /n	nin							
Notes: Flow rate through sa	mple train should be	approximately roomL/m								

Purging only to include bore sand pack if new installation.

Project Na	amo													
Project N	umber	2207	292 -> FDC	c aws aian	to Andilt	Date:		22/06/23	2.					
Site Addr	amper:	22072	92			Field Sta	ff:	Declar	Declar					
Word	-58;	GWS Gi	ants C.O.E	, NSW				Equipment:	6A-5000					
P	Conditions:	14%,	llear	Barome Pressur	tric e (mb):	1017-	b	Relative Pressure (Pa):	-0.05mL					
Borehole	ID:	LFho	1	Bore Co	ondition:	hood		Max Gas Flow Rate (Take before gas	0.1 1/h/ a1 1/h					
Depth to after gas read	Water (Take dings):	2		Rainfall past 24 ho	(mm in purs):	Yes		readings):	BEFORE AFTEN					
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Com	ments					
Ambient	12.19	1	0.0	0.1	20.6	79.3	0							
Bore	12.26	(lel	4.4	18.8	75.7	0							
	12.27	2	1.6	6.0	17.9	74.4	0							
	12.28	1	2.3	6.7	16.6	74.5	0							
	12.29	ł	2.5	8.7	13.4	76.0	0							
	(2.30	۱	0.9	9.0	10.6	79.2	0							
	12.31	1	0.7	8.19	174-6	78.4	0							
	12.32	l	0.5	7.1	14.6	77.8	0							
	12.33	1	0.4	6.9	15.1	77.4	U							
Maximum	-	2	2.5	\$9.D	18.B	76.2	0							

Project N	ame:	FD4 6	with highly	Andin		Date:		22/06/2013	1
Project N	umber:	1.05 0		Jun P		Field Sta	off-	2400/0075	
Site Addr	'ess:	Tron	242				****	Fauinment	
Weather	0	GWS G	iants (+c	D.E. NSW				Equipment.	LA 3000
	Conditions:	15°C1	Overcess	Barome Pressu	etric re (mb):	lolb		Relative Pressure (Pa):	0.07nc
Borehole	ID:	hFh0;	z	Bore C	ondition:	4000	Sec. + S	Max Gas Flow Rate (Take before gas readings):	0.0 1/h 0.2 1/h
Depth to after gas rea	Water (Take idings):	-		Rainfal past 24 ho	l (mm in ours):	Yes			
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Comi	ments
Ambient	3.08	(0.0	0.1	21.0	79.0	0		
Bore	3.12	l	0.0	5.0	16.6	78.4	0		
	3,13	1	0.0	5.1	16.9	78.1	0 .		
	3.14	١	0.0	5.0	17.0	78.0	0		
	3.15	l	0.0	4.9	17.2	77.9	0		
	3.16	1	0.0	4.7	17.5	77.8	0		
Maximum	-)	0.0	8.1	17.5	78.4	U		and the second

Project Na	ime:	FDC h	ws hiants	Andib		Date:		22/06/2023	22/06/2023						
Project Nu	umber:	22072	92			Field Sta	iff:	Decla							
Site Addre	ess:	aws a	iants cut	,NSW				Equipment:	LA-5000						
Weather C	onditions:	14°C (1	ear	Barome Pressu	etric re (mb):	1017 mb		Relative Pressure (Pa):	0.07mb						
Borehole	ID:	LFGC	23	Bore Co	ondition:	6000		Max Gas Flow Rate (Take before gas readings):	0.0 A/h /0.24h						
Depth to after gas read	Water (Take lings):	-		Rainfall past 24 ho	(mm in purs):	Чер			- opro- njro						
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Com	ments						
Ambient	1.09	1	0.0	0.1	20.8	79.2	0								
Bore	1.13	1	74.5	12.7	0.7	12.0	0								
	1.14	(74.9	12.9	0.1	12.2	в								
	1.15	1	74.8	12.8	0.0	12.4	6								
	1.16	1	74.8	12.9	0.0	12.3	0								
	1,17	l	75.0	12.9	0.0	12.2	C								
Maximum	-	1	75.0	12.1	0.7										

.

Project Na	ame:	EDC G	NG Giants	Andit		Date:		22/06/2023	22/06/2023					
Project N	umber:	220729	2			Field Sta	ff:	Declan						
Site Addr	ess:	aws Gi	ants C.O	. E ,NSW				Equipment:	GA5000					
Weather (Conditions:	15°C,	Overcas t	Barome Pressu	etric re (mb):	1016 mb	-	Relative Pressure (Pa):	0.07 m					
Borehole	ID:	NF404	Ŀ,	Bore C	ondition:	4000		Max Gas Flow Rate (Take before gas readings):	0.11/h/ 0.31/h BEFURE DEFER					
Depth to after gas rea	Water (Take dings):	-		Rainfal past 24 h	Rainfall (mm in past 24 hours):									
	Time (start)	CO (ppm)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	Balance (%v/v)	H2S (ppm)	Com	ments					
Ambient	2.14	1	6.0	0.1	21.2	78.8	6							
Bore	2.17	2	47.3	10.7	0.3	41.8	0							
	2.18	1	47.7	10.7	0.0	41.5	0							
	2.19	2	47.8	10.7	0.0	41.5	O							
	2.20	1	47.8	10.7	0.0	41.5	0							
	2.21	2	47.9	10.7	0.0	41.4	C							
Maximum	-	2	47.9	10.7	0.3	41.8	0							

Appendix G: BoM Weather Data

Bankstown, New South Wales May 2023 Daily Weather Observations

Australian Government

Bureau of Meteorology

	Temps		Dain	Evan	Sun	Max wind gust		9am							3	pm					
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Mo	7.6	20.8	0.2			W	30	15:57	14.0	75		NW	6	1015.3	20.4	38	2	W	11	1011.6
2	Tu	7.3	22.3	0			WSW	37	12:28	16.6	62		WNW	13	1016.2	21.7	42	4	W	13	1014.2
3	We	7.8	24.3	0			WNW	52	10:52	19.0	56		N	17	1014.3	23.7	26		WNW	22	1010.7
4	Th	7.5	20.9	0			WNW	37	00:57	14.4	52		WSW	13	1020.0	19.4	47		ESE	9	1018.3
5	Fr	8.3	22.2	0			NNE	26	15:17	13.5	72		W	7	1019.7	21.4	38		N	15	1015.0
6	Sa	6.2	22.1	0			W	24	12:21	12.8	73		WSW	6	1019.4	21.4	34		WSW	9	1015.5
7	Su	7.8	16.5	0			SW	52	21:33	12.5	68	8	W	15	1016.3	16.0	33		W	24	1012.9
8	Mo	7.0	17.6	7.0			WSW	52	09:47	12.7	43		WSW	20	1015.2	17.1	29	8	SW	17	1015.7
9	Tu	6.7	20.1	0			SW	31	09:57	13.6	55		WSW	9	1021.6	18.0	46	8	SSW	13	1021.7
10	We	8.9	20.3	0			E	24	14:35	13.6	58		W	11	1027.5	19.2	44		ESE	13	1025.4
11	Th	8.0	21.8	0			ESE	22	15:48	13.9	72		WNW	9	1030.5	20.1	48	2	NNE	11	1027.2
12	Fr	7.1	24.1	0			NE	17	16:25	13.2	80		WNW	7	1030.3	24.0	31		ENE	9	1026.8
13	Sa	9.0	21.8	0			SE	33	16:04	14.7	79		W	7	1032.2	18.9	68	8	ESE	17	1029.6
14	Su	10.8	20.7	5.2			ESE	26	14:40	15.7	83	1	WNW	4	1030.9	19.0	70	4	SE	19	1027.0
15	Mo	9.4	21.4	0.2			SE	24	14:28	13.0	97	8	WNW	6	1026.5	18.7	72	7	E	15	1022.3
16	Tu	8.4	22.3	0.2			SSW	33	23:59	13.4	90		N	7	1020.4	21.1	48	2	SSE	19	1016.9
17	We	11.1	18.7	0			S	39	11:18	13.9	67	2	WSW	9	1023.8	16.7	49	6	S	19	1022.3
18	Th	7.5	17.4	0.2			S	28	14:24	12.7	66	7	SW	15	1021.6	17.1	55	8	SSE	19	1017.7
19	Fr	6.4	19.3	0			SW	24	09:04	11.1	65		WSW	13	1019.0	18.9	31		WSW	9	1014.8
20	Sa	3.5	19.1	0			WSW	35	15:35	11.2	64		NW	7	1017.2	18.2	37		W	19	1013.7
21	Su	5.9	19.3	0			WSW	57	13:40	14.6	54	1	NW	7	1014.5	17.6	43		W	30	1014.1
22	Mo	4.0	20.9	0			WNW	19	10:35	11.6	65		W	7	1026.9	19.7	28		WNW	2	1024.1
23	Tu	3.1	20.7	0			E	20	15:13	10.4	66		NNW	7	1028.9	19.1	42		ESE	15	1025.9
24	We	4.5	21.7	0			WNW	15	09:21	9.5	78		NW	7	1027.5	20.8	31		WNW	7	1023.3
25	Th	2.8	19.4	0			NNW	19	10:51	9.1	86			Calm	1020.9	19.3	37	7	N	7	1015.0
26	Fr	7.1	16.6	0			SSE	52	10:27	12.3	60	8	SSW	4	1011.6	15.5	49	8	SW	19	1014.5
27	Sa	2.9	18.5	0			WSW	30	15:23	9.8	66		WNW	9	1019.1	16.6	44		WSW	15	1015.1
28	Su	0.7	17.9	0			WNW	35	14:22	8.1	71		WNW	7	1016.5	16.8	41	2	W	19	1013.1
29	Mo	4.6	21.1	0			W	39	14:03	11.1	73		SE	4	1017.1	20.0	35		W	20	1015.7
30	Tu	4.0	21.4	0			WSW	31	13:53	11.6	69		NW	6	1023.8	20.9	40		W	17	1020.0
31	We	4.8	21.4	0			NNW	20	13:52	12.9	76	4	WNW	6	1021.1	20.6	50	4	WNW	9	1016.5
Statisti	cs for Ma	y 2023																			
	Mean	6.5	20.4							12.8	69	4		8	1021.5	19.3	42	5		14	1018.6
	Lowest	0.7	16.5							8.1	43	1		Calm	1011.6	15.5	26	2	WNW	2	1010.7
	Highest	11.1	24.3	7.0			WSW	57		19.0	97	8	WSW	20	1032.2	24.0	72	8	W	30	1029.6
	Total			13.0																	

Observations were drawn from Bankstown Airport AWS {station 066137}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2008.202305 Prepared at 16:00 UTC on 2 Jul 2023 Copyright © 2023 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

Bankstown, New South Wales June 2023 Daily Weather Observations

Australian Government

Bureau of Meteorology

Temps		nps	Pain	Rain Evap	Evap Sun	Max	k wind g	ust		9am					3pm						
Date	Day	Min	Max	Rain	Evap	Jun	Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP
		°C	°C	mm	mm	hours		km/h	local	°C	%	eighths		km/h	hPa	°C	%	eighths		km/h	hPa
1	Th	9.6	21.3	0			N	19	13:01	13.3	85	8		Calm	1018.2	19.5	58	7		Calm	1017.0
2	Fr	8.8	21.6	0			NNE	20	13:51	14.7	85	8	NW	7	1025.5	20.0	67	5	E	13	1022.6
3	Sa	12.3	24.7	0			SE	31	14:55	14.4	99	7	NW	6	1025.4	22.8	51	5	SE	24	1023.1
4	Su	14.3	18.5	0			ESE	33	15:22	17.5	68	8	SSE	13	1033.4	17.7	60	8	ESE	22	1031.8
5	Mo	11.1	20.0	0.2			ENE	30	15:08	14.4	83	7	SW	7	1032.6	19.2	52	8	N	7	1028.2
6	Tu	11.1	20.4	0			NE	22	15:02	14.0	93	8		Calm	1029.8	20.2	56	5	NE	13	1026.1
7	We	8.5	21.3	0			NE	30	12:06	13.2	94	1		Calm	1027.2	21.0	56		NE	11	1022.7
8	Th	7.9	18.6	0			N	30	13:26	11.6	99	8	W	4	1017.4	15.6	84	8	N	13	1011.6
9	Fr	3.8	20.8	0.2			W	33	14:31	10.2	96		ESE	6	1016.6	20.0	38		WNW	20	1014.7
10	Sa	3.3	18.9	0.8			WSW	26	11:36	10.8	76		WNW	6	1023.5	18.6	35		NW	7	1021.3
11	Su	2.4	18.8	0			SE	19	16:36	8.9	77		WNW	7	1026.6	18.1	40		ENE	2	1022.4
12	Mo	3.6	20.7	0			NNW	13	11:10	7.6	97	3		Calm	1022.9	20.1	49	1	WNW	4	1017.6
13	Tu	6.2	20.8	0			WNW	33	18:27	11.1	99			Calm	1015.0	19.6	51		N	9	1010.4
14	We	5.9	18.5	0			WNW	43	14:41	13.7	57		NW	7	1013.4	18.0	27		W	17	1012.5
15	Th	4.0	18.9	0			WSW	33	12:47	9.8	64		WNW	7	1018.1	18.2	38		WNW	17	1015.3
16	Fr	2.8	20.4	0			SW	24	12:07	9.1	74		WNW	9	1022.2	19.9	39		W	7	1019.6
17	Sa	2.9	19.8	0			NW	13	11:46	8.0	95		W	7	1022.8	19.5	35		N	7	1017.0
18	Su	0.6	19.8	0			WNW	48	15:18	6.2	93			Calm	1016.2	18.1	34	6	WNW	17	1012.7
19	Mo	0.3	17.6	0			WNW	39	21:21	4.3	90			Calm	1017.1	17.0	29		NW	19	1011.6
20	Tu	2.8	16.4	0			WSW	28	14:13	9.2	54		W	9	1020.8	15.9	31		SSE	11	1019.9
21	We	0.8	17.2	0			WNW	17	09:32	7.3	69		NW	9	1025.2	16.2	33		N	4	1022.1
22	Th	4.3	15.2	0			NW	13	12:01	8.7	75	8	NW	9	1021.0	14.4	59	8	NW	2	1015.8
23	Fr	8.5	19.2	7.2			WNW	39	12:18	11.5	90		N	9	1009.3	18.9	33	1	WNW	17	1006.5
24	Sa	3.9	20.5	0			WNW	30	13:02	11.7	67		NNW	4	1014.6	20.2	28		NW	11	1010.5
25	Su	2.1	20.6	0			WNW	48	12:57	10.5	68			Calm	1012.9	19.9	22		WNW	20	1009.8
26	Mo	7.9	19.2	0			W	57	17:46	15.3	42		NNE	11	1013.7	18.2	32		W	22	1012.7
27	Tu	6.5	18.4	0			WNW	28	12:52	12.7	59		NW	7	1022.0	17.9	40	1	SW	15	1018.6
28	We	10.3	11.6	1.2			NNW	17	12:41	10.7	90	8	NW	7	1017.9	10.5	90	8	WNW	2	1013.1
29	Th	5.7	15.7	3.6			SW	30	11:24	10.2	68		WSW	11	1017.5	15.2	38		SW	19	1015.6
30	Fr	5.9	18.5	0			WSW	37	15:40	12.6	51		W	15	1018.2	17.9	39		wsw	20	1016.9
Statisti	cs for Ju	ne 2023				1	1									1 1					
	Mean	5.9	19.1							11.1	78	6		5	1020.6	18.3	44	5		12	1017.3
	Lowest	0.3	11.6							4.3	42	1		Calm	1009.3	10.5	22	1		Calm	1006.5
	Highest	14.3	24.7	7.2			W	57		17.5	99	8	W	15	1033.4	22.8	90	8	SE	24	1031.8
	Total			13.2																	

Observations were drawn from Bankstown Airport AWS {station 066137}

Some cloud observations are from automated equipment; these are somewhat different to those made by a human observer and may not appear every day.

IDCJDW2008.202306 Prepared at 13:00 UTC on 2 Jul 2023 Copyright © 2023 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf

W | www.arcenvironmental.com.au **T** | (03) 8383 1950

A | Suite 1.03 7 Jeffcott Street West Melbourne VIC 3003

